Abstract

Three electronically addressed spatial light modulators (SLM’s) are tested for their utility in forming optical taps onto an acousto-optic delay line. The SLM’s are characterized as devices within a specific optical signal-processing application rather than as independent components. The signal-processing architecture described here uses a programmable tapped delay line for estimating multipath delays. Overall system performance specifications necessitate the SLM requirements. These requirements are compared with the measured performance characteristics of a magneto-optic SLM, a liquid-crystal display, and an acousto-optic deflector used as an SLM. The magneto-optic SLM and the liquid-crystal display are found to provide insufficient contrast and system light efficiency. The acousto-optic-based SLM is found to provide the best overall SLM performance for this particular optical signal processing application.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hansen, J. Loughlin, “Adaptive array for elimination of multipath interference at HF,” IEEE Trans. Antennas Propag. AP-29, 836–841 (1981).
  2. J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).
  3. W. Gabriel, “Adaptive arrays: an introduction,” Proc. IEEE 64, 239–272 (1976).
  4. S. T. Welstead, M. J. Ward, C. Keefer, “Neural network approach to multipath delay estimation,” in Adaptive Signal Processing, S. Haykin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1565, 482–491 (1991).
  5. W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).
  6. A. VanderLugt, “Adaptive optical processor,” Appl. Opt. 21, 4005–4011 (1982).
  7. R. J. Berinato, M. A. Abushagar, “Optical signal processor for adaptive filtering,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 232–241 (1990).
  8. R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 207–217 (1990).
  9. F. B. Rotz, “Time integrating correlator,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 163–169 (1979).
  10. R. A. Sprague, C. L. Kaliopolous, “Time integrating optical correlator,” Appl. Opt. 15, 89–92 (1976).
  11. D. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
  12. D. R. Pape, “Acousto-optic signal processors,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), pp. 233–240.
  13. S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).
  14. S. T. Welstead, M. J. Ward, “Enhanced dynamic range linear spatial light modulator,” U.S. patent5,039,210 (August1991).
  15. S. T. Welstead, M. J. Ward, “Hybrid electro-optic processor,” final tech. rep. RL-TR-91-164 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1991).
  16. D. M. Blanchard, M. J. Ward, “Characterization of liquid crystal displays for optical signal processing applications,” final tech. rep. RADC-TR-89-226 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1989)
  17. Sight-Mod Development System Operations Manual (Semetex Corporation, Torrance, Calif., 14March1989).

1989

J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).

1982

1981

P. Hansen, J. Loughlin, “Adaptive array for elimination of multipath interference at HF,” IEEE Trans. Antennas Propag. AP-29, 836–841 (1981).

1977

D. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).

1976

R. A. Sprague, C. L. Kaliopolous, “Time integrating optical correlator,” Appl. Opt. 15, 89–92 (1976).

W. Gabriel, “Adaptive arrays: an introduction,” Proc. IEEE 64, 239–272 (1976).

Abushagar, M. A.

R. J. Berinato, M. A. Abushagar, “Optical signal processor for adaptive filtering,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 232–241 (1990).

Berinato, R. J.

R. J. Berinato, M. A. Abushagar, “Optical signal processor for adaptive filtering,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 232–241 (1990).

Blanchard, D. M.

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

D. M. Blanchard, M. J. Ward, “Characterization of liquid crystal displays for optical signal processing applications,” final tech. rep. RADC-TR-89-226 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1989)

Brost, G. A.

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

Cadzow, J.

J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).

Gabriel, W.

W. Gabriel, “Adaptive arrays: an introduction,” Proc. IEEE 64, 239–272 (1976).

Halby, S. L.

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

Hansen, P.

P. Hansen, J. Loughlin, “Adaptive array for elimination of multipath interference at HF,” IEEE Trans. Antennas Propag. AP-29, 836–841 (1981).

Hecht, D.

D. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).

Iodice, R. M.

W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).

Kaliopolous, C. L.

Keefer, C.

S. T. Welstead, M. J. Ward, C. Keefer, “Neural network approach to multipath delay estimation,” in Adaptive Signal Processing, S. Haykin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1565, 482–491 (1991).

Kim, Y.

J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).

Loughlin, J.

P. Hansen, J. Loughlin, “Adaptive array for elimination of multipath interference at HF,” IEEE Trans. Antennas Propag. AP-29, 836–841 (1981).

Montgomery, R. M.

R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 207–217 (1990).

Pape, D. R.

D. R. Pape, “Acousto-optic signal processors,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), pp. 233–240.

Penn, W. A.

W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).

Rotz, F. B.

F. B. Rotz, “Time integrating correlator,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 163–169 (1979).

Shiue, D.

J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).

Sprague, R. A.

VanderLugt, A.

Ward, M. J.

S. T. Welstead, M. J. Ward, C. Keefer, “Neural network approach to multipath delay estimation,” in Adaptive Signal Processing, S. Haykin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1565, 482–491 (1991).

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

S. T. Welstead, M. J. Ward, “Hybrid electro-optic processor,” final tech. rep. RL-TR-91-164 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1991).

S. T. Welstead, M. J. Ward, “Enhanced dynamic range linear spatial light modulator,” U.S. patent5,039,210 (August1991).

D. M. Blanchard, M. J. Ward, “Characterization of liquid crystal displays for optical signal processing applications,” final tech. rep. RADC-TR-89-226 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1989)

Wasiewicz, R.

W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).

Welstead, S. T.

S. T. Welstead, M. J. Ward, “Enhanced dynamic range linear spatial light modulator,” U.S. patent5,039,210 (August1991).

S. T. Welstead, M. J. Ward, “Hybrid electro-optic processor,” final tech. rep. RL-TR-91-164 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1991).

S. T. Welstead, M. J. Ward, C. Keefer, “Neural network approach to multipath delay estimation,” in Adaptive Signal Processing, S. Haykin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1565, 482–491 (1991).

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

Appl. Opt.

IEEE Trans. Antennas Propag.

P. Hansen, J. Loughlin, “Adaptive array for elimination of multipath interference at HF,” IEEE Trans. Antennas Propag. AP-29, 836–841 (1981).

IEEE Trans. Antennas Propog.

J. Cadzow, Y. Kim, D. Shiue, “General direction of arrival estimation: a signal subspace approach,” IEEE Trans. Antennas Propog. AES-25, 31–46 (1989).

IEEE Trans. Sonics Ultrason.

D. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).

Proc. IEEE

W. Gabriel, “Adaptive arrays: an introduction,” Proc. IEEE 64, 239–272 (1976).

Other

S. T. Welstead, M. J. Ward, C. Keefer, “Neural network approach to multipath delay estimation,” in Adaptive Signal Processing, S. Haykin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1565, 482–491 (1991).

W. A. Penn, R. Wasiewicz, R. M. Iodice, “Optical adaptive multipath canceller for surveillance radar,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 151–160 (1990).

R. J. Berinato, M. A. Abushagar, “Optical signal processor for adaptive filtering,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 232–241 (1990).

R. M. Montgomery, “Acousto-optic/photorefractive processor for adaptive antenna arrays,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 207–217 (1990).

F. B. Rotz, “Time integrating correlator,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 163–169 (1979).

D. R. Pape, “Acousto-optic signal processors,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), pp. 233–240.

S. T. Welstead, M. J. Ward, D. M. Blanchard, G. A. Brost, S. L. Halby, “Adaptive signal processing using a liquid crystal television,” in Real-Time Signal Processing XII, J. P. Letellier, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1154, 244–252 (1989).

S. T. Welstead, M. J. Ward, “Enhanced dynamic range linear spatial light modulator,” U.S. patent5,039,210 (August1991).

S. T. Welstead, M. J. Ward, “Hybrid electro-optic processor,” final tech. rep. RL-TR-91-164 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1991).

D. M. Blanchard, M. J. Ward, “Characterization of liquid crystal displays for optical signal processing applications,” final tech. rep. RADC-TR-89-226 (Rome Laboratory, Griffiss Air Force Base, N.Y., 1989)

Sight-Mod Development System Operations Manual (Semetex Corporation, Torrance, Calif., 14March1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of electro-optic architecture for performing multipath delay estimation.

Fig. 2
Fig. 2

AO deflector used as an SLM (AOSLM) to form optical taps onto an AO tapped delay line. The rf frequency inputs F1 and F2 generate taps at unique delays τ1 and τ2. f.l., focal length.

Fig. 3
Fig. 3

Two-dimensional pixelated SLM system generating a one-dimensional array of optical taps onto an AO tapped delay line. Light passing through two partially transmissive columns generates taps at unique delays τ1 and τ2.

Fig. 4
Fig. 4

Intensity profile of a single optical tap incident onto an AO tapped delay line. These taps are generated by using (a) an LCD, (b) a MOSLM, and (c) an AOSLM.

Tables (1)

Tables Icon

Table 1 Summary of SLM Characteristics and System Requirements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( t ) = j = 1 N a j n 1 ( t - δ j ) ,
y ( w , t ) = k = 0 M w k n 1 [ t - k ( T / M ) ] .
F ( w ) = t e ( w , t ) 2 dt
e ( w , t ) = s ( t ) - y ( w , t ) .

Metrics