Abstract

The integration issues regarding liquid crystals and silicon-chip technology are discussed. A 12 × 12 active-matrix array is fabricated in silicon and addresses a ferroelectric liquid crystal. The structure and performance of the resulting electronically addressed spatial light modulator are reported.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Collings, W. A. Crossland, P. J. Ayliff, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4748 (1989).
  2. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal/silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).
  3. M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).
  4. D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.
  5. D. Jared, K. M. Johnson, “Optically addressed thresholding of VLSI liquid crystal SLM’s,” Opt. Lett. 16, p. 967 (1991).
  6. D. Armitage, D. K. Kinell, “Miniature spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 158–165 (1990).
  7. T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).
  8. L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
  9. J. Funfschilling, M. Schadt, “Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays,” J. Appl. Phys. 66, 3877–3882 (1989).
  10. D. Armitage, “Gray-scale ferroelectrical liquid crystal devices,” in Liquid Crystal Displays and Applications, J. W. Doane, Z. Yaniv, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1257, 116–124 (1990).
  11. L. Liau, A. Muray, M. Chen, “Impact of wafer flatness on submicron optical lithography,” in Optical Microlithography VI, H. L. Stover, ed. Proc. Soc. Photo-Opt. Instrum. Eng.772, 232–238 (1987).
  12. D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).
  13. L. E. Stillwagon, “Planarization of substrate topography by spin-coated films: a review,” Solid State Technol. 30, 67–71 (June1987).
  14. S. K. Gupta, “Spin-on glass for dielectric planarization,” Microelectron. Manuf. Test. 12(4), 1–6 (1989).
  15. H. M. Weissman, “Epoxy replication of optics,” Opt. Eng. 15, 435–441 (1976).
  16. D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).
  17. G. Gheen, W. W. Washwell, D. Armitage, “The effect of filter pixelation on optical correlation,” in Spatial Light Modulators and Applications, vol. 14 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 161–164.
  18. S. D. Lindell, D. L. Flannery, “Ternary phase-amplitude filters for character recognition,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 174–182 (1989).
  19. W. J. A. M. Hartmann, “Ferroelectric liquid crystal video display,” in International Display Research Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 191–194.
  20. D. Armitage, J. I. Thackara, W. D. Eades, “Photoad-dressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
  21. S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

1991 (1)

1990 (1)

1989 (6)

N. Collings, W. A. Crossland, P. J. Ayliff, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4748 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, “Photoad-dressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

J. Funfschilling, M. Schadt, “Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays,” J. Appl. Phys. 66, 3877–3882 (1989).

S. K. Gupta, “Spin-on glass for dielectric planarization,” Microelectron. Manuf. Test. 12(4), 1–6 (1989).

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

1988 (1)

D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).

1987 (1)

L. E. Stillwagon, “Planarization of substrate topography by spin-coated films: a review,” Solid State Technol. 30, 67–71 (June1987).

1982 (1)

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

1976 (1)

H. M. Weissman, “Epoxy replication of optics,” Opt. Eng. 15, 435–441 (1976).

Ammlung, R. L.

D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).

Anderson, W. W.

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Armitage, D.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoad-dressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, D. K. Kinell, “Miniature spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 158–165 (1990).

G. Gheen, W. W. Washwell, D. Armitage, “The effect of filter pixelation on optical correlation,” in Spatial Light Modulators and Applications, vol. 14 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 161–164.

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

D. Armitage, “Gray-scale ferroelectrical liquid crystal devices,” in Liquid Crystal Displays and Applications, J. W. Doane, Z. Yaniv, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1257, 116–124 (1990).

Ayliff, P. J.

Beresnev, L. A.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

Chen, M.

L. Liau, A. Muray, M. Chen, “Impact of wafer flatness on submicron optical lithography,” in Optical Microlithography VI, H. L. Stover, ed. Proc. Soc. Photo-Opt. Instrum. Eng.772, 232–238 (1987).

Chigrinov, V. G.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

Clark, N. A.

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

Clerc, J. F.

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

Collings, N.

Cotter, L. K.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal/silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).

M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).

Crossland, W. A.

Dergachev, D. I.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

Dijon, J.

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

Dillon, R. J.

Drabik, T. J.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal/silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).

M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).

Eades, W. D.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoad-dressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Flannery, D. L.

S. D. Lindell, D. L. Flannery, “Ternary phase-amplitude filters for character recognition,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 174–182 (1989).

Funfschilling, J.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

J. Funfschilling, M. Schadt, “Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays,” J. Appl. Phys. 66, 3877–3882 (1989).

Gaalema, S. D.

M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).

Gheen, G.

G. Gheen, W. W. Washwell, D. Armitage, “The effect of filter pixelation on optical correlation,” in Spatial Light Modulators and Applications, vol. 14 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 161–164.

Golland, D. I.

D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).

Gupta, S. K.

S. K. Gupta, “Spin-on glass for dielectric planarization,” Microelectron. Manuf. Test. 12(4), 1–6 (1989).

Handschy, M. A.

L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric liquid crystal/silicon integrated circuit spatial light modulator,” Opt. Lett. 15, 291–293 (1990).

M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).

Hartmann, W. J. A. M.

W. J. A. M. Hartmann, “Ferroelectric liquid crystal video display,” in International Display Research Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 191–194.

Jared, D.

Jared, D. A.

D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.

Johnson, K. M.

D. Jared, K. M. Johnson, “Optically addressed thresholding of VLSI liquid crystal SLM’s,” Opt. Lett. 16, p. 967 (1991).

D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.

Kamamori, H.

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Kawahara, Y.

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Kinell, D. K.

D. Armitage, D. K. Kinell, “Miniature spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 158–165 (1990).

Krusell, W. C.

D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).

Lagerwall, S. T.

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

Liau, L.

L. Liau, A. Muray, M. Chen, “Impact of wafer flatness on submicron optical lithography,” in Optical Microlithography VI, H. L. Stover, ed. Proc. Soc. Photo-Opt. Instrum. Eng.772, 232–238 (1987).

Lindell, S. D.

S. D. Lindell, D. L. Flannery, “Ternary phase-amplitude filters for character recognition,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 174–182 (1989).

Motte, S.

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Muray, A.

L. Liau, A. Muray, M. Chen, “Impact of wafer flatness on submicron optical lithography,” in Optical Microlithography VI, H. L. Stover, ed. Proc. Soc. Photo-Opt. Instrum. Eng.772, 232–238 (1987).

Nakamura, J.

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Poshidaev, E. P.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

Schadt, M.

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

J. Funfschilling, M. Schadt, “Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays,” J. Appl. Phys. 66, 3877–3882 (1989).

Slagle, T.

D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.

Stiller, M. A.

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Stillwagon, L. E.

L. E. Stillwagon, “Planarization of substrate topography by spin-coated films: a review,” Solid State Technol. 30, 67–71 (June1987).

Thackara, J. I.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoad-dressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Underwood, I.

Vass, D. G.

Wagner, K.

D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.

Washwell, W. W.

G. Gheen, W. W. Washwell, D. Armitage, “The effect of filter pixelation on optical correlation,” in Spatial Light Modulators and Applications, vol. 14 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 161–164.

Weissman, H. M.

H. M. Weissman, “Epoxy replication of optics,” Opt. Eng. 15, 435–441 (1976).

Yamazaki, T.

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Appl. Opt. (2)

Ferroelectrics (1)

S. T. Lagerwall, N. A. Clark, J. Dijon, J. F. Clerc, “Ferroelectric liquid crystals: the development of devices,” Ferroelectrics 94, 3–62 (1989).

J. Appl. Phys. (1)

J. Funfschilling, M. Schadt, “Fast responding and highly multiplexible distorted helix ferroelectric liquid crystal displays,” J. Appl. Phys. 66, 3877–3882 (1989).

Liq. Cryst. (1)

L. A. Beresnev, V. G. Chigrinov, D. I. Dergachev, E. P. Poshidaev, J. Funfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).

Microelectron. Manuf. Test. (1)

S. K. Gupta, “Spin-on glass for dielectric planarization,” Microelectron. Manuf. Test. 12(4), 1–6 (1989).

Opt. Eng. (1)

H. M. Weissman, “Epoxy replication of optics,” Opt. Eng. 15, 435–441 (1976).

Opt. Lett. (2)

Proc. Soc. Inf. Disp. (1)

T. Yamazaki, Y. Kawahara, S. Motte, H. Kamamori, J. Nakamura, “A liquid-crystal TV display panel incorporating drivers,” Proc. Soc. Inf. Disp. 23/4, 223–226 (1982).

Semicond. Int. (USA) (1)

D. I. Golland, R. L. Ammlung, W. C. Krusell, “200-mm silicon wafer future trends: flatter and cleaner,” Semicond. Int. (USA) 11, 151–155 (1988).

Solid State Technol. (1)

L. E. Stillwagon, “Planarization of substrate topography by spin-coated films: a review,” Solid State Technol. 30, 67–71 (June1987).

Other (9)

D. Armitage, D. K. Kinell, “Miniature spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 158–165 (1990).

D. Armitage, “Gray-scale ferroelectrical liquid crystal devices,” in Liquid Crystal Displays and Applications, J. W. Doane, Z. Yaniv, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1257, 116–124 (1990).

L. Liau, A. Muray, M. Chen, “Impact of wafer flatness on submicron optical lithography,” in Optical Microlithography VI, H. L. Stover, ed. Proc. Soc. Photo-Opt. Instrum. Eng.772, 232–238 (1987).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

G. Gheen, W. W. Washwell, D. Armitage, “The effect of filter pixelation on optical correlation,” in Spatial Light Modulators and Applications, vol. 14 of OSA 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 161–164.

S. D. Lindell, D. L. Flannery, “Ternary phase-amplitude filters for character recognition,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 174–182 (1989).

W. J. A. M. Hartmann, “Ferroelectric liquid crystal video display,” in International Display Research Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 191–194.

M. A. Handschy, T. J. Drabik, L. K. Cotter, S. D. Gaalema, “Fast ferroelectric-liquid-crystal spatial light modulator with silicon-integrated circuit active backplane,” in Optical and Digital Galluium Arsenide Technologies for Signal Processing Applications, M. P. Bendett, D. H. Butler, A. Prabhakar, A. Yang, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1291, 158–164 (1990).

D. A. Jared, T. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulator,” in Annual Meeting 1989, Vol. 18 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

General silicon-chip structure for a liquid-crystal SLM.

Fig. 2
Fig. 2

Optical micrograph of a 12 × 12 pixel array silicon chip with pixel dimensions of 70 μm × 100 μm.

Fig. 3
Fig. 3

Cross section of pixel isolation FET showing an aluminum drain, source, mirror connection, and a polysilicon gate surrounded by insulating oxides.

Fig. 4
Fig. 4

Assembled 12 × 12 array FLC–silicon chip EASLM.

Fig. 5
Fig. 5

Polarizing microscope pictures of a 12 × 12 array FLC/silicon-chip EASLM operating in the DHF mode with checker-pattern addressing.

Fig. 6
Fig. 6

Polarizing microscope view of the matrix-addressed pattern RDD LCD, and the erasure effect of increased readout light.

Fig. 7
Fig. 7

Intensity modulated output of the EASLM showing a 20:1 contrast ratio with applied ±5 V and a time scale of 200 μs/div.

Metrics