Abstract

We demonstrate the capability of optically addressed spatial light modulators that incorporate surface-stabilized ferroelectric liquid crystals to reproduce gray scale. This capability is based on temporal averaging and is observed in an operating mode in which the applied voltage repeatedly cycles the device between writing and erasing at operating frequencies between 100 and 2000 Hz. A gray scale response is observed for write-light intensities below a saturation level that increases from 100 μW/cm2 at 100 Hz to 2 mW/cm2 at 2 kHz. We develop a procedure to determine the modulation transfer function from measurements of the diffraction efficiency as a function of spatial frequency and write-light intensity in a device with a nonlinear transfer characteristic. At an operating frequency of 500 Hz, the modulation transfer function is greater than or equal to 0.50 at a spatial frequency of 40 line pairs/mm.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).
  2. A. D. Fisher, “Spatial light modulators: functional capabilities, applications, and devices,” Int. J. Optoelectron. 5, 125–168 (1990).
  3. G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).
  4. N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys.Lett. 36, 899–901 (1980).
  5. S. Fukushima, T. Kurokawa, S. Matsuo, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).
  6. S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).
  7. W. J. A. M. Hartmann, “Ferroelectric liquid-crystal video display,” Proc. Soc. Inf. Disp. 30, 99–103 (1989).
  8. M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).
  9. J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
  10. K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).
  11. N. A. Clark, T. P. Rieker, “Smectic-C chevron, a planar liquid crystal defect: implications for the surface-stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988).
  12. B. Landreth, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
  13. W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).
  14. P. R. Barbier, G. Moddel, “Hydrogenated amorphous silicon photodiodes for optical addressing of spatial light modulators,” Appl. Opt. (to be published).
  15. BDH Ltd., Broom Road, Poole BH12 4NN, Dorset, England.
  16. B. Landreth, G. Moddel, “Analog response from binary spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 64–72 (1990).

1991 (4)

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

B. Landreth, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed spatial light modulator,” Appl. Opt. 30, 179–180 (1991).

1990 (3)

S. Fukushima, T. Kurokawa, S. Matsuo, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

A. D. Fisher, “Spatial light modulators: functional capabilities, applications, and devices,” Int. J. Optoelectron. 5, 125–168 (1990).

1989 (2)

W. J. A. M. Hartmann, “Ferroelectric liquid-crystal video display,” Proc. Soc. Inf. Disp. 30, 99–103 (1989).

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

1988 (1)

N. A. Clark, T. P. Rieker, “Smectic-C chevron, a planar liquid crystal defect: implications for the surface-stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988).

1980 (1)

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys.Lett. 36, 899–901 (1980).

1973 (1)

T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).

Barbier, P. R.

P. R. Barbier, G. Moddel, “Hydrogenated amorphous silicon photodiodes for optical addressing of spatial light modulators,” Appl. Opt. (to be published).

Beard, T. D.

T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).

Bleha, W. P.

T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).

Brocklehurst, J. R.

Clark, N. A.

N. A. Clark, T. P. Rieker, “Smectic-C chevron, a planar liquid crystal defect: implications for the surface-stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988).

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys.Lett. 36, 899–901 (1980).

de Bougrenet de la Tocnaye, J. L.

Dorfmuller, L.

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

Ebihara, T.

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

Fisher, A. D.

A. D. Fisher, “Spatial light modulators: functional capabilities, applications, and devices,” Int. J. Optoelectron. 5, 125–168 (1990).

Fukushima, S.

Gomes, C. M.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Handschy, M. A.

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Hartmann, W. J. A. M.

W. J. A. M. Hartmann, “Ferroelectric liquid-crystal video display,” Proc. Soc. Inf. Disp. 30, 99–103 (1989).

Hoshi, H.

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

Johnson, K. M.

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Kato, N.

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

Kimura, M.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Kobayashi, S.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Kurokawa, T.

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys.Lett. 36, 899–901 (1980).

Landreth, B.

B. Landreth, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).

B. Landreth, G. Moddel, “Analog response from binary spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 64–72 (1990).

Li, W.

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

Maeda, H.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Marx, K.

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

Matsuo, S.

Matuszczyk, T.

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

Moddel, G.

B. Landreth, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

B. Landreth, G. Moddel, “Analog response from binary spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 64–72 (1990).

P. R. Barbier, G. Moddel, “Hydrogenated amorphous silicon photodiodes for optical addressing of spatial light modulators,” Appl. Opt. (to be published).

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Pagano-Stauffer, L. A.

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

Reinhart, K-F.

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

Rice, R. A.

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

Rieker, T. P.

N. A. Clark, T. P. Rieker, “Smectic-C chevron, a planar liquid crystal defect: implications for the surface-stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988).

Sekine, H.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Wong, S.-Y.

T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).

Yammamoto, S.

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

Yoshida, M.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Zhang, B. Y.

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. D. Beard, W. P. Bleha, S.-Y. Wong, “ac liquid crystal light valve,” Appl. Phys. Lett. 22, 90–92 (1973).

Appl. Phys.Lett. (1)

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys.Lett. 36, 899–901 (1980).

Ferroelectrics (2)

S. Yammamoto, T. Ebihara, N. Kato, H. Hoshi, “Ferroelectric liquid crystal spatial light modulator using a hydrogenated amorphous silicon as a photoconductor,” Ferroelectrics 114, 81–92 (1991).

K-F. Reinhart, L. Dorfmuller, K. Marx, T. Matuszczyk, “Addressing of ferroelectric liquid crystal matrices and electrooptical characterization,” Ferroelectrics 113, 405–417 (1991).

IEEE Trans. Electron Devices (1)

W. Li, R. A. Rice, G. Moddel, L. A. Pagano-Stauffer, M. A. Handschy, “Hydrogenated amorphous-silicon photosensor for optically addressed high-speed spatial light modulator,” IEEE Trans. Electron Devices 36, 2959–2964 (1989).

Int. J. Optoelectron. (1)

A. D. Fisher, “Spatial light modulators: functional capabilities, applications, and devices,” Int. J. Optoelectron. 5, 125–168 (1990).

Jpn. J. Appl. Phys. (1)

B. Landreth, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).

Opt. Lett. (1)

Phys. Rev. A (1)

N. A. Clark, T. P. Rieker, “Smectic-C chevron, a planar liquid crystal defect: implications for the surface-stabilized ferroelectric liquid crystal geometry,” Phys. Rev. A 37, 1053–1056 (1988).

Proc. Soc. Inf. Disp. (2)

W. J. A. M. Hartmann, “Ferroelectric liquid-crystal video display,” Proc. Soc. Inf. Disp. 30, 99–103 (1989).

M. Kimura, H. Maeda, C. M. Gomes, M. Yoshida, B. Y. Zhang, H. Sekine, S. Kobayashi, “Electrically and optically controlled gray scale in SSFLCDs,” Proc. Soc. Inf. Disp. 31, 139–143 (1990.).

Other (4)

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

P. R. Barbier, G. Moddel, “Hydrogenated amorphous silicon photodiodes for optical addressing of spatial light modulators,” Appl. Opt. (to be published).

BDH Ltd., Broom Road, Poole BH12 4NN, Dorset, England.

B. Landreth, G. Moddel, “Analog response from binary spatial light modulators,” in Advances in Optical Information Processing IV, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1296, 64–72 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross Section of the OASLM showing the constituent layers and their relation to the write and the read beams.

Fig. 2
Fig. 2

Spatially integrated readout intensity for write-light intensities of 0, 0.06, 0.12, 0.25, 0.6, and 2.0 mW/cm2 over one complete cycle of device operation at 500 Hz. The write period occurs between 0 and 1 ms, and the erase period occurs between 1 and 2 ms.

Fig. 3
Fig. 3

10%–90% SSFLC rise time versus write-light intensity for OASLM operating frequencies of 100, 200, 500, 1000, and 2000 Hz.

Fig. 4
Fig. 4

Spatially integrated readout intensity during the write period for five OASLM orientations between crossed polarizers at a constant write-light intensity of 0.5 mW/cm2. The angles refer to the angular orientation of the OASLM with respect to the conventional orientation used to obtain the data in Fig. 2.

Fig. 5
Fig. 5

Time-integrated intensity transfer characteristic versus write-light intensity for operating frequencies of 100, 200, 500, 1000, and 2000 Hz. The data were obtained from the numerical integration of transient responses, including those shown in Fig. 2.

Fig. 6
Fig. 6

Photograph of a readout image taken from a video monitor. The interferometrically generated write-light fringes were of average intensity, 0.25 mW/cm2. The visibility was 0.98, and the spatial frequency was 1.2 lp/mm. The operating frequency was 500 Hz.

Fig. 7
Fig. 7

Calculated form of readout fringes (solid curves) and experimental data for peak write fringe intensities of 0.1, 0.5, 1.0, and 4.0 mW/cm2 and an operating frequency of 500 Hz.

Fig. 8
Fig. 8

Contour plot showing the MTF versus the spatial frequency and the peak write fringe intensity at an operating frequency of 500 Hz. The data used to prepare this plot were derived from diffraction efficiency measurements, as discussed in the text.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I r = sin 2 ( 2 θ ) sin 2 ( 2 π Δ n d / λ ) ,
I i ( x ) = I 0 2 [ 1 + cos ( 2 π f x ) ] ,
I e ( x ) = I 0 2 [ 1 + m cos ( 2 π f x ) ] ,
CTF ( I 0 ) = ITC ( I 0 ) - ITC ( 0 ) ITC ( I 0 ) + ITC ( 0 ) .

Metrics