Abstract

We report the characteristics of a truly bistable optically addressed ferroelectric liquid-crystal spatial light modulator that is capable of storing binary images. We show that, in addition to this bistability, a nonlinear response and gray scales can be observed under certain operating conditions. We then report on how these capabilities can be used in implementing optical neurocomputing architectures.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).
  2. N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).
  3. D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).
  4. S. Fukushima, T. Kurokawa, S. Matsuo, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).
  5. R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.
  6. N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).
  7. J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
  8. M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.
  9. B. Landreth, G. Moddel, “Variable-sensitivity analog response from an optically-addressable spatial light modulator,” in Spatial Light Modulators and their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 109–112.
  10. Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).
  11. T. C. Chieu, K. H. Yang, “Effect of alignment layer conductivity on the bistability of surface stabilized ferroelectric liquid-crystal devices,” Appl. Phys. Lett. 56, 1326–1328 (1990).
  12. P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).
  13. W. J. A. M. Hartmann, “Charge-controlled phenomena in the SSFLC structure,” J. Appl. Phys. 66, 1132–1136 (1989).
  14. M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).
  15. A. D. Fisher, “Spatial light modulators: functional capabilities, applications and devices,” Int. J. Optoelectronics 5, 123–167 (1990).
  16. K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing,” Appl. Opt. 28, 4888–4899 (1989).
  17. J. Duvillier, J. L. de Bougrenet de la Tocnaye, P. Anizan, “Optical architecture of ‘Kohonen Map’ type with contiguously and locally distributed neurons,” in Neuro–Nimes 91, Fourth International Conference on Neural Networks and Their Applications (EC2, Nanterre Cedex, France1991).
  18. S. D. D. Goggin, K. M. Johnson, K. Gustafson, “Primacy and recency effects in back propagation learning,” Prog. Neural Networks (to be published).
  19. M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

1991

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).

1990

T. C. Chieu, K. H. Yang, “Effect of alignment layer conductivity on the bistability of surface stabilized ferroelectric liquid-crystal devices,” Appl. Phys. Lett. 56, 1326–1328 (1990).

S. Fukushima, T. Kurokawa, S. Matsuo, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15, 285–287 (1990).

A. D. Fisher, “Spatial light modulators: functional capabilities, applications and devices,” Int. J. Optoelectronics 5, 123–167 (1990).

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

1989

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

W. J. A. M. Hartmann, “Charge-controlled phenomena in the SSFLC structure,” J. Appl. Phys. 66, 1132–1136 (1989).

K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing,” Appl. Opt. 28, 4888–4899 (1989).

1988

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Anizan, P.

J. Duvillier, J. L. de Bougrenet de la Tocnaye, P. Anizan, “Optical architecture of ‘Kohonen Map’ type with contiguously and locally distributed neurons,” in Neuro–Nimes 91, Fourth International Conference on Neural Networks and Their Applications (EC2, Nanterre Cedex, France1991).

Aoki, K.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Asada, H.

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

Brocklehurst, J. R.

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

Cambon, P.

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

Chieu, T. C.

T. C. Chieu, K. H. Yang, “Effect of alignment layer conductivity on the bistability of surface stabilized ferroelectric liquid-crystal devices,” Appl. Phys. Lett. 56, 1326–1328 (1990).

Chittick, R. C.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

Collings, N.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Crossland, W. A.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

de Bougrenet de la Tocnaye, J. L.

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).

M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).

J. Duvillier, J. L. de Bougrenet de la Tocnaye, P. Anizan, “Optical architecture of ‘Kohonen Map’ type with contiguously and locally distributed neurons,” in Neuro–Nimes 91, Fourth International Conference on Neural Networks and Their Applications (EC2, Nanterre Cedex, France1991).

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

Duvillier, J.

J. Duvillier, J. L. de Bougrenet de la Tocnaye, P. Anizan, “Optical architecture of ‘Kohonen Map’ type with contiguously and locally distributed neurons,” in Neuro–Nimes 91, Fourth International Conference on Neural Networks and Their Applications (EC2, Nanterre Cedex, France1991).

Färber, P.

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

Fisher, A. D.

A. D. Fisher, “Spatial light modulators: functional capabilities, applications and devices,” Int. J. Optoelectronics 5, 123–167 (1990).

Fukuda, A.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Fukushima, S.

Goggin, S. D. D.

S. D. D. Goggin, K. M. Johnson, K. Gustafson, “Primacy and recency effects in back propagation learning,” Prog. Neural Networks (to be published).

Gustafson, K.

S. D. D. Goggin, K. M. Johnson, K. Gustafson, “Primacy and recency effects in back propagation learning,” Prog. Neural Networks (to be published).

Handschy, M. A.

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Hartmann, W. J. A. M.

W. J. A. M. Hartmann, “Charge-controlled phenomena in the SSFLC structure,” J. Appl. Phys. 66, 1132–1136 (1989).

Johnson, K. M.

K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing,” Appl. Opt. 28, 4888–4899 (1989).

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

S. D. D. Goggin, K. M. Johnson, K. Gustafson, “Primacy and recency effects in back propagation learning,” Prog. Neural Networks (to be published).

Killinger, M.

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

Kobayashi, H.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Kurita, S.

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

Kurokawa, T.

Landreth, B.

B. Landreth, G. Moddel, “Variable-sensitivity analog response from an optically-addressable spatial light modulator,” in Spatial Light Modulators and their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 109–112.

Latham, S. G.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Matsuo, S.

Miyahara, M.

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

Moddel, G.

K. M. Johnson, G. Moddel, “Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing,” Appl. Opt. 28, 4888–4899 (1989).

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

B. Landreth, G. Moddel, “Variable-sensitivity analog response from an optically-addressable spatial light modulator,” in Spatial Light Modulators and their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 109–112.

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Ouchi, Y.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Pagano-Stauffer, L. A.

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

Powell, M. A.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Powles, C. M. J.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Sato, Y.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Sparks, A. P.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Takahashi, N. S.

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

Takeshita, H.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Takezoe, H.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Tanaka, T.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Watanabe, H.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Williams, D.

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Yang, K. H.

T. C. Chieu, K. H. Yang, “Effect of alignment layer conductivity on the bistability of surface stabilized ferroelectric liquid-crystal devices,” Appl. Phys. Lett. 56, 1326–1328 (1990).

Appl. Opt.

Appl. Phys. Lett.

N. S. Takahashi, H. Asada, M. Miyahara, S. Kurita, “High speed light wave using an amorphous silicon photosensor and ferroelectric liquid crystal gates,” Appl. Phys. Lett. 51, 1233–1235 (1988).

T. C. Chieu, K. H. Yang, “Effect of alignment layer conductivity on the bistability of surface stabilized ferroelectric liquid-crystal devices,” Appl. Phys. Lett. 56, 1326–1328 (1990).

Ferroelectrics

M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Controlling the grey level of a bistable FLC spatial light modulator,” Ferroelectrics 122, 89–99 (1991).

M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystals to optical computing,” Ferroelectrics 85, 279–289 (1988).

Int. J. Opt. Comput.

N. Collings, S. G. Latham, R. C. Chittick, W. A. Crossland, “Reconfigurable optical interconnect using an optically addressed light valve,” Int. J. Opt. Comput. 1, 31–40 (1990).

Int. J. Optoelectronics

A. D. Fisher, “Spatial light modulators: functional capabilities, applications and devices,” Int. J. Optoelectronics 5, 123–167 (1990).

J. Appl. Phys.

W. J. A. M. Hartmann, “Charge-controlled phenomena in the SSFLC structure,” J. Appl. Phys. 66, 1132–1136 (1989).

J. Phys. D

D. Williams, S. G. Latham, C. M. J. Powles, M. A. Powell, R. C. Chittick, A. P. Sparks, N. Collings, “An amorphous silicon/chiral smectic spatial light modulator,” J. Phys. D 21, 156–159 (1988).

Jpn. J. Appl. Phys.

Y. Sato, T. Tanaka, H. Kobayashi, K. Aoki, H. Watanabe, H. Takeshita, Y. Ouchi, H. Takezoe, A. Fukuda, “High quality ferroelectric liquid crystal display with quasi-bookshelf layer structure,” Jpn. J. Appl. Phys. 28, L483–L486 (1989).

Opt. Eng.

P. Färber, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Parallel access read/write binary spatial light registers for digital optical computing architectures,” Opt. Eng. 30, 1942–1946 (1991).

Opt. Lett.

Other

R. C. Chittick, W. A. Crossland, J. R. Brocklehurst, M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, “Development and applications of a truly bistable optically addressed spatial light modulator,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 136–140.

J. Duvillier, J. L. de Bougrenet de la Tocnaye, P. Anizan, “Optical architecture of ‘Kohonen Map’ type with contiguously and locally distributed neurons,” in Neuro–Nimes 91, Fourth International Conference on Neural Networks and Their Applications (EC2, Nanterre Cedex, France1991).

S. D. D. Goggin, K. M. Johnson, K. Gustafson, “Primacy and recency effects in back propagation learning,” Prog. Neural Networks (to be published).

M. Killinger, P. Cambon, J. L. de Bougrenet de la Tocnaye, R. C. Chittick, J. R. Brocklehurst, “Nonlinear spatial operators using optically addressed ferroelectric spatial light modulators,” in Spatial Light Modulators and Their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 141–144.

B. Landreth, G. Moddel, “Variable-sensitivity analog response from an optically-addressable spatial light modulator,” in Spatial Light Modulators and their Applications, Vol. 14 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 109–112.

G. Moddel, K. M. Johnson, M. A. Handschy, “Photoaddressing of high speed liquid crystal spatial light modulators,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 207–213 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the OASLM. The device can be operated in a reflective mode (as shown) or in a transmissive mode. ITO, indium tin oxide.

Fig. 2
Fig. 2

Conventional drive scheme used to operate an OASLM. Bipolar pulses are used to ensure an average zero dc field across the device.

Fig. 3
Fig. 3

Drive scheme used in the experiment. The pulse length is 500 μs. A cycle consists of an erase operation (reset) of the device and a write operation. The optical response is measured as a function of the applied voltage and the write-light intensity.

Fig. 4
Fig. 4

Nonlinear optical response of the BOASLM as a function of the write-light intensity. The applied voltage is 20 V and the pulse length is 500 μs. The dashed curve serves as a guide to the eye.

Fig. 5
Fig. 5

Sequence of photomicrographs of the area under study showing the switching through different gray-level states to the ON state. The applied voltage is 30 V, and the write-light intensity is (a) 5 μW/cm2, (b) 10 μW/cm2, (c) 40 μW/cm2, (d) 200 μW/cm2.

Fig. 6
Fig. 6

Plot of the optical response of the BOASLM versus the write-light intensity for different spot sizes. For a spot size smaller than 100 μm the measurements are no longer repetitive.

Fig. 7
Fig. 7

(a) Comparison of the optical response (as measured with a photometer) with the switched area. The illustration is derived from photomicrographs. The observed area is 100 μm. (b) Plot of the optical response versus the switched area.

Fig. 8
Fig. 8

Comparison of the optical response of the BOASLM and the electrically addressed test cell.

Fig. 9
Fig. 9

Plot of the optical response of the BOASLM versus the optical response of the electrically addressed test cell. The solid curve represents the voltage that actually drops across the FLC as a result of the voltage divider that is formed by RFLC and RPH.

Fig. 10
Fig. 10

Accumulation of two images on the BOASLM: (a) test target written on the device, (b) result of a second write operation carried out without an intermediate erase operation. The originally written image and a rotated version of the image are superimposed.

Tables (1)

Tables Icon

Table I Typical Device Characteristics of the BOASLM

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( I ) ~ k I γ ,
R FLC / R FLC + R PH ( I ) ,             1 / R PH ( I ) = σ ( I ) .

Metrics