Abstract

The development of a new class of spatial light modulator (SLM), which uses modulation of lossy guided waves generated by surface-plasmon resonance, is described. The potential advantages of this technique are explained, including increased response uniformity and enhanced sensitivity and speed. An optically addressed SLM that is based on a nematic liquid crystal with a spatial resolution better than 10 line pairs/mm (at 50% modulation transfer function) is demonstrated. For the design of devices that are based on newer smectic liquid crystals the use of anisotropy-induced polarization mixing and the so-called pseudoplasmon modes are described. Such modes offer controllable sensitivity–spatial resolution characteristics in simple liquid-crystal SLM structures. Within a typical SLM resolution requirement of 10 line pairs/mm, for example, the sensitivity can be optimized to obtain a theoretical reflectivity modulation from 0 to 0.7 for a liquid-crystal director modulation of 5°.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Otto, “Excitation of non-radiative surface plasma waves by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
  2. E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (19871).
  3. E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).
  4. I. Pockrand, “Resonant anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D 9, 2423–2432 (1976).
  5. G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).
  6. K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).
  7. S. J. Elston, J. R. Sambles “Characterisation of reorientation of a thin layer of ferroelectric liquid crystal material under an applied field by excitation of optical modes,” Appl. Phys. Lett. 55, 1621–1623 (1989).
  8. G. T. Sincerbox, J. C. Gordon, “Small fast large-aperture light modulator using attenuated total reflection,” Appl. Opt. 20, 1491–1492 (1981).
  9. G. I. Stegeman, “Guidedwave approaches to optical bistability,” IEEE J. Quantum Electron. QE-18, 1510–1619 (1982).
  10. D. L. Begley, E. Andideh, “Modulation of surface electromagnetic waves,” Appl. Opt. 29, 1874–1876 (1990).
  11. A. F. Evans, D. G. Hall, “Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 μm using a Schottky diode,” Appl. Phys. Lett. 56, 212–214 (1990).
  12. J. D. Swalen, “High frequency light modulator or display,” IBM Tech. Discl. Bull. 22(8B), 3801–3802 (1980).
  13. I. R. Girling, U.K. patent application8619720, General Electric Company Plc. (17February1988).
  14. E. M. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).
  15. B. Rothenhausler, W. P. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52, 1554–1556 (1988).
  16. T. Okamoto, I. Yamaguchi, “Surface plasmon microscope,” Jpn. J. Opt. 19, 682–686 (1990).
  17. E. M. Yeatman, M. E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613–615 (1989).
  18. M. E. Caldwell, E. M. Yeatman, “Optically addressed spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990)
  19. M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).
  20. D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid-crystal-over-nMOS array,” Appl. Opt. 28, 4757–4763 (1989).
  21. B. A. Horwitz, F. J. Corbett, “The PROM—Theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).
  22. D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).
  23. E. M. Yeatman, E. A. Ash, “Computerised surface plasmon microscopy,” in Scanning Imaging, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1028, 231–236 (1989).
  24. D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators” Appl. Opt. 28, 4763–4771 (1989).
  25. D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).
  26. T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).
  27. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).
  28. R. F. Wallis, J. J. Brion, “Theory of surface plasmon-polaritons on anisotropic media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9, 3424–3437 (1973).
  29. S. J. Elston, J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mol. Opt. 37, 1895–1902 (1990).
  30. G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).
  31. U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).
  32. D. Y. Ko, J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).
  33. M. E. Caldwell, E. M. Yeatman, “Performance characteristics of a surface plasmon liquid crystal light valve,” Electron. Lett. 27, 1471–1472 (1991).

1991

M. E. Caldwell, E. M. Yeatman, “Performance characteristics of a surface plasmon liquid crystal light valve,” Electron. Lett. 27, 1471–1472 (1991).

1990

S. J. Elston, J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mol. Opt. 37, 1895–1902 (1990).

D. L. Begley, E. Andideh, “Modulation of surface electromagnetic waves,” Appl. Opt. 29, 1874–1876 (1990).

A. F. Evans, D. G. Hall, “Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 μm using a Schottky diode,” Appl. Phys. Lett. 56, 212–214 (1990).

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope,” Jpn. J. Opt. 19, 682–686 (1990).

1989

E. M. Yeatman, M. E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613–615 (1989).

M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).

D. J. McKnight, D. G. Vass, R. M. Sillitto, “Development of a spatial light modulator: a randomly addressed liquid-crystal-over-nMOS array,” Appl. Opt. 28, 4757–4763 (1989).

S. J. Elston, J. R. Sambles “Characterisation of reorientation of a thin layer of ferroelectric liquid crystal material under an applied field by excitation of optical modes,” Appl. Phys. Lett. 55, 1621–1623 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators” Appl. Opt. 28, 4763–4771 (1989).

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).

1988

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

B. Rothenhausler, W. P. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52, 1554–1556 (1988).

D. Y. Ko, J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).

1987

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (19871).

E. M. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).

1982

G. I. Stegeman, “Guidedwave approaches to optical bistability,” IEEE J. Quantum Electron. QE-18, 1510–1619 (1982).

1981

G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).

G. T. Sincerbox, J. C. Gordon, “Small fast large-aperture light modulator using attenuated total reflection,” Appl. Opt. 20, 1491–1492 (1981).

1980

J. D. Swalen, “High frequency light modulator or display,” IBM Tech. Discl. Bull. 22(8B), 3801–3802 (1980).

1978

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

1976

I. Pockrand, “Resonant anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D 9, 2423–2432 (1976).

1974

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

1973

T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).

R. F. Wallis, J. J. Brion, “Theory of surface plasmon-polaritons on anisotropic media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9, 3424–3437 (1973).

1968

A. Otto, “Excitation of non-radiative surface plasma waves by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

Anderson, W. W.

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Andersson, G.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Andideh, E.

Armitage, D.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Ash, E. A.

E. M. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).

E. M. Yeatman, E. A. Ash, “Computerised surface plasmon microscopy,” in Scanning Imaging, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1028, 231–236 (1989).

Au, A.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Ayliffe, P. J.

Bak, C. S.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Beard, T. D.

T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).

Begley, D. L.

Bleha, W. P.

T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).

Brion, J. J.

R. F. Wallis, J. J. Brion, “Theory of surface plasmon-polaritons on anisotropic media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9, 3424–3437 (1973).

Burstein, E.

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

Byles, W.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Caldwell, M. E.

M. E. Caldwell, E. M. Yeatman, “Performance characteristics of a surface plasmon liquid crystal light valve,” Electron. Lett. 27, 1471–1472 (1991).

E. M. Yeatman, M. E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613–615 (1989).

M. E. Caldwell, E. M. Yeatman, “Optically addressed spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990)

Chen, W. J.

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

Chen, W. P.

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

Chittick, R. C.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Clark, M. G.

K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).

Clark, N. A.

M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).

Collings, N.

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28, 4740–4747 (1989).

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Corbett, F. J.

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

Crossland, W. A.

Dahl, I.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Eades, W. D.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Efron, U.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Elston, S. J.

S. J. Elston, J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mol. Opt. 37, 1895–1902 (1990).

S. J. Elston, J. R. Sambles “Characterisation of reorientation of a thin layer of ferroelectric liquid crystal material under an applied field by excitation of optical modes,” Appl. Phys. Lett. 55, 1621–1623 (1989).

Evans, A. F.

A. F. Evans, D. G. Hall, “Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 μm using a Schottky diode,” Appl. Phys. Lett. 56, 212–214 (1990).

Garvin, H. L.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Girling, I. R.

I. R. Girling, U.K. patent application8619720, General Electric Company Plc. (17February1988).

Goodwin, N. W.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Gordon, J. C.

Hall, D. G.

A. F. Evans, D. G. Hall, “Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 μm using a Schottky diode,” Appl. Phys. Lett. 56, 212–214 (1990).

Handschy, M. A.

M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).

Harstein, A.

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

Horwitz, B. A.

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

Keller, P.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Knoll, W. P.

B. Rothenhausler, W. P. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52, 1554–1556 (1988).

Ko, D. Y.

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (19871).

Kuczynski, W.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Lager-wall, S. T.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Latham, S. G.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

McKnight, D. J.

Meadows, M. R.

M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope,” Jpn. J. Opt. 19, 682–686 (1990).

Otto, A.

A. Otto, “Excitation of non-radiative surface plasma waves by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

Owechko, Y.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Pockrand, I.

I. Pockrand, “Resonant anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D 9, 2423–2432 (1976).

Powell, M. A.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Powles, C. M.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Reif, P. G.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Rothenhausler, B.

B. Rothenhausler, W. P. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52, 1554–1556 (1988).

Sambles, J. R.

S. J. Elston, J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mol. Opt. 37, 1895–1902 (1990).

S. J. Elston, J. R. Sambles “Characterisation of reorientation of a thin layer of ferroelectric liquid crystal material under an applied field by excitation of optical modes,” Appl. Phys. Lett. 55, 1621–1623 (1989).

D. Y. Ko, J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A 5, 1863–1866 (1988).

K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).

Santo, R.

G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).

Sharp, K.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Sillitto, R. M.

Sincerbox, G. T.

Sparkes, A. P.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Sprockel, G. J.

G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).

Stebler, B.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

Stegeman, G. I.

G. I. Stegeman, “Guidedwave approaches to optical bistability,” IEEE J. Quantum Electron. QE-18, 1510–1619 (1982).

Stiller, M. A.

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Swalen, J. D.

G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).

J. D. Swalen, “High frequency light modulator or display,” IBM Tech. Discl. Bull. 22(8B), 3801–3802 (1980).

Thackara, J. I.

D. Armitage, J. I. Thackara, W. D. Eades, “Photoaddressed liquid crystal spatial light modulators” Appl. Opt. 28, 4763–4771 (1989).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

Underwood, I.

Vass, D. G.

Wallis, R. F.

R. F. Wallis, J. J. Brion, “Theory of surface plasmon-polaritons on anisotropic media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9, 3424–3437 (1973).

Welford, K. R.

K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).

Welkowsky, M. S.

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Williams, D.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

Wong, S. Y.

T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope,” Jpn. J. Opt. 19, 682–686 (1990).

Yeatman, E. M.

M. E. Caldwell, E. M. Yeatman, “Performance characteristics of a surface plasmon liquid crystal light valve,” Electron. Lett. 27, 1471–1472 (1991).

E. M. Yeatman, M. E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613–615 (1989).

E. M. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).

M. E. Caldwell, E. M. Yeatman, “Optically addressed spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990)

E. M. Yeatman, E. A. Ash, “Computerised surface plasmon microscopy,” in Scanning Imaging, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1028, 231–236 (1989).

Appl. Opt.

Appl. Phys. Lett.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lager-wall, K. Sharp, B. Stebler, “Submicrosecond electro-optic switching in the liquid crystal smectic A phase: the soft-mode ferroelectric effect,” Appl. Phys. Lett. 51, 640–642 (1987).

E. M. Yeatman, M. E. Caldwell, “Spatial light modulation using surface plasmon resonance,” Appl. Phys. Lett. 55, 613–615 (1989).

T. D. Beard, W. P. Bleha, S. Y. Wong, “a.c. liquid crystal light valve” Appl. Phys. Lett. 22, 90–92 (1973).

S. J. Elston, J. R. Sambles “Characterisation of reorientation of a thin layer of ferroelectric liquid crystal material under an applied field by excitation of optical modes,” Appl. Phys. Lett. 55, 1621–1623 (1989).

A. F. Evans, D. G. Hall, “Measurement of the electrically induced refractive index change in silicon for wavelength 1.3 μm using a Schottky diode,” Appl. Phys. Lett. 56, 212–214 (1990).

B. Rothenhausler, W. P. Knoll, “Surface plasmon interferometry in the visible,” Appl. Phys. Lett. 52, 1554–1556 (1988).

M. R. Meadows, M. A. Handschy, N. A. Clark, “Electro-optic switching using total internal reflection by a ferroelectric liquid crystal,” Appl. Phys. Lett. 54, 1394–1396 (1989).

Electron. Lett.

E. M. Yeatman, E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23, 1091–1092 (1987).

M. E. Caldwell, E. M. Yeatman, “Performance characteristics of a surface plasmon liquid crystal light valve,” Electron. Lett. 27, 1471–1472 (1991).

IBM Tech. Discl. Bull.

J. D. Swalen, “High frequency light modulator or display,” IBM Tech. Discl. Bull. 22(8B), 3801–3802 (1980).

IEEE J. Quantum Electron.

G. I. Stegeman, “Guidedwave approaches to optical bistability,” IEEE J. Quantum Electron. QE-18, 1510–1619 (1982).

J. Mol. Opt.

S. J. Elston, J. R. Sambles, “Surface plasmon-polaritons on an anisotropic substrate,” J. Mol. Opt. 37, 1895–1902 (1990).

J. Opt. Soc. Am. A

J. Phys.

D. Williams, S. G. Latham, C. M. Powles, M. A. Powell, R. C. Chittick, A. P. Sparkes, N. Collings, “An amorphous silicon/chiral smectic SLM,” J. Phys. 21, S156–S159 (1988).

J. Phys. D

I. Pockrand, “Resonant anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D 9, 2423–2432 (1976).

J. Vac. Sci. Technol.

E. Burstein, W. P. Chen, W. J. Chen, A. Harstein, “Surface polaritons,” J. Vac. Sci. Technol. 11, 1004–1021 (1974).

Jpn. J. Opt.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscope,” Jpn. J. Opt. 19, 682–686 (1990).

Liq. Cryst.

K. R. Welford, J. R. Sambles, M. G. Clark, “Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection,” Liq. Cryst. 2, 91–106 (1987).

Mol. Cryst. Liq. Cryst.

G. J. Sprockel, R. Santo, J. D. Swalen, “Determination of the surface tilt angle (in LC) by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29–38 (1981).

Opt. Eng.

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

Phys. Rev. B

R. F. Wallis, J. J. Brion, “Theory of surface plasmon-polaritons on anisotropic media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9, 3424–3437 (1973).

Z. Phys.

A. Otto, “Excitation of non-radiative surface plasma waves by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (19871).

Other

I. R. Girling, U.K. patent application8619720, General Electric Company Plc. (17February1988).

D. Armitage, J. I. Thackara, W. D. Eades, M. A. Stiller, W. W. Anderson, “Fast nematic liquid crystal spatial light modulator,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 34–44 (1987).

E. M. Yeatman, E. A. Ash, “Computerised surface plasmon microscopy,” in Scanning Imaging, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1028, 231–236 (1989).

M. E. Caldwell, E. M. Yeatman, “Optically addressed spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990)

U. Efron, A. Au, C. S. Bak, N. W. Goodwin, P. G. Reif, H. L. Garvin, W. Byles, Y. Owechko, M. S. Welkowsky, “A submicron metal grid mirror liquid crystal light valve for optical processing applications,” in Optical Information Processing System and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 591–606 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Prism-coupled SPR structure. (b) Reflectivity curve and field intensity distributions in the structure at three angles of incidence near resonance.

Fig. 2
Fig. 2

Operating principle of a surface-plasmon SLM.

Fig. 3
Fig. 3

Optically addressed, nematic LC-based surface-plasmon SLM structure.

Fig. 4
Fig. 4

Plan view of the imaging system that is used for surface-plasmon SLM’s. The plane of incidence of the read beam is parallel to that of the figure.

Fig. 5
Fig. 5

Measured SPR reflectivity curves. Minimum angular resolution is 0.1°. The maximum contrast angular position used in subsequent measurements is indicated by the dashed line.

Fig. 6
Fig. 6

Examples of image conversion by a surface-plasmon SLM, showing input images (white light) and output images (coherent light at 633 nm).

Fig. 7
Fig. 7

Measured MTF’s: (a) vertical, (b) horizontal.

Fig. 8
Fig. 8

Geometry used to describe the tilt angle ϕ and twist angle ψ of the LC director n in surface-plasmon devices.

Fig. 9
Fig. 9

(a) Typical LC-based TIR device structure for comparison with (b), the pseudoplasmon mode SLM structure under consideration.

Fig. 10
Fig. 10

Pseudoplasmon resonance reflectivity curves at 633 nm for ϕ = 0°, ψ = 50°. The dashed curve is for a semi-infinite LC, and the solid curve is for a 2-μm-thick LC with a silicon backplane, as detailed in Fig. 9(b). The TIR critical angle is 70.2° in this case.

Fig. 11
Fig. 11

Amplitude envelopes of electric field intensity in the device of Fig. 9(b) for a unitary amplitude input beam: (a) at a resonance (68.6° in Fig. 10) and (b) between resonances (67.8°). The dotted curves show the TE field component and the solid curves show the total (TE plus TM) field. Note the distorted vertical scale.

Fig. 12
Fig. 12

(a) Variation of the pseudoplasmon mode angular position with increasing twist angle ψ at ϕ = 0. The extraordinary wave TIR critical angle is shown as well as the near-critical angle region for which spatial resolution cannot be calculated in the present analysis. (b) Variation of Γt (spatial resolution) of the modes within the calculable range.

Fig. 13
Fig. 13

Example modulator reflectivity curves calculated at ϕ = 0°, ψ = 52.5° (solid curve), and ψ = 48.5° (dashed curve) for the device of Fig. 9(b). High-contrast modulation occurs near θ = 68° from the third-order pseudoplasmon mode resonance position, which is marked A as in Fig. 12, to midway between modes, which is marked B as in Fig. 12.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k o n p sin θ = β ,
k o n p sin θ r = β r ,
β r + j Γ i = k o ( d m d + m ) 1 / 2 .
H ( z ) = H ( 0 ) exp [ j ( β r + j Γ t ) z ] ,
Γ t = ( Γ i + Γ r ) .
r ( B ) = ( β - β r ) - j ( Γ i - Γ r ) ( β - β r ) - j ( Γ i + Γ r ) r p m ,
R ( β ) = 1 - 4 Γ i Γ r ( β - β r ) 2 + ( Γ i + Γ r ) 2 ,
Γ i = Γ r .
Q = β r 4 Γ i .
d act = j ( d k o 2 - β r 2 ) 1 / 2 ,
Δ n 0.5 2 Γ i ( d β r / d n ) ,
Δ n 0.5 d act λ 8 Q .
Δ n 0.5 d = λ / 8

Metrics