Abstract

The manufacture of complicated optical coatings consisting of many layers of different thicknesses can be a challenge, especially if the deposition technique does not produce dense layers. Deposition errors in a layer can affect not only the desired performance of a multilayer, but can also lead to a complete breakdown of the monitoring and control of subsequent layers. The best chance to achieve the desired optical performance of a multilayer involves deposition error compensation. In this process, the construction parameters of a completed layer are evaluated to determine if any deposition errors have occurred and then the remaining layers of the multilayer system are reoptimized to compensate for any errors made. This paper describes a versatile deposition error compensation program developed at the National Research Council of Canada for the simulation and real-time control of the manufacture of multilayers composed of dielectric or absorbing films. To model porous layers, an effective medium theory approach is used to relate the optical constants of the layer in vacuum and air to the microstructure of the layer. In the simulation mode, random errors are applied to the thickness and porosity of the layers and measurement errors are also included. The best monitoring strategy for the manufacture of a given multilayer is established on the basis of statistical information obtained from a number of these simulations. In this paper the results of calculations on the effectiveness of various monitoring strategies are presented for a sharp edge filter produced by three different physical vapor deposition methods. An extensive list of references to previous papers dealing with sources of errors during deposition is also provided.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Pulker, “Optical coatings: status of the art and recent developments,” Le Vide 223, 395–404 (1984).
  2. J. A. Dobrowolski, “Usual and unusual applications of optical thin films,” in Thin Films for Optical Coatings, K. H. Guenther, ed. (Springer-Verlag, New York, 1991), Vol. 1.
  3. J. A. Dobrowolski, F. C. Ho, A. Belkind, V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824–2831 (1989).
    [CrossRef] [PubMed]
  4. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1986).
  5. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).
  6. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986).
    [CrossRef]
  7. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  8. A. Bloom, “Refining and optimization in multilayers,” Appl. Opt. 20, 66–73 (1981).
    [CrossRef] [PubMed]
  9. J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
    [CrossRef] [PubMed]
  10. J. A. Dobrowolski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990).
    [CrossRef] [PubMed]
  11. J. A. Dobrowolski, “Computer design of optical coatings,” Thin Solid Films 163, 97–100 (1988).
    [CrossRef]
  12. J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
    [CrossRef] [PubMed]
  13. H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A 4, 418–422 (1986).
    [CrossRef]
  14. W. Steckelmacher, “Thin film monitoring techniques,” in Thin Film Microelectronics, L. Holland, ed. (Chapman & Hall, London, 1965).
  15. P. S. Burggraaf, “Deposition rate monitoring for thin film process control,” Semicond. Int. 4(10), 59–78 (1981).
  16. H. K. Pulker, “Progress in monitoring thin film thickness with quartz crystal resonators,” Thin Solid Films 32, 27–33 (1976).
    [CrossRef]
  17. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
    [CrossRef] [PubMed]
  18. P. Bousquet, E. Pelletier, “Optical thin film monitoring—recent advances and limitations,” Thin Solid Films 77, 165–179 (1981).
    [CrossRef]
  19. E. Girardet, “Automatisierung der Herstellung in Hochvakuum aufgedampfter, dünner Schichten,” Jahrb. Opt. Feinmech.195–211 (1971).
  20. M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
    [CrossRef]
  21. D. J. Sandoz, “Automatic computer control of the manufacture of thin-film optical devices,” Proc. IEEE 123, 445–450 (1976).
    [CrossRef]
  22. D. King, G. R. Hoffman, “Microcomputer control of thin film alloy deposition,” Vacuum 32, 695–700 (1982).
    [CrossRef]
  23. H. K. Pulker, “Thickness measurement, rate control and automation in thin film coating technology,” in Thin Film Technologies I, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.401, 100–108 (1983).
  24. D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
    [CrossRef]
  25. R. Herrmann, A. Zöller, “Automated optical coating processes with optical thickness monitoring,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 2–9 (1986).
  26. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
    [CrossRef]
  27. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982 (1979).
    [CrossRef] [PubMed]
  28. B. Vidal, A. Fornier, E. Pelletier, “Optical monitoring of nonquarterwave multilayer coatings,” Appl. Opt. 17, 1038–1047 (1978).
    [CrossRef] [PubMed]
  29. B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
    [PubMed]
  30. B. Vidal, E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with minicomputer allowing correction of thickness errors,” Appl. Opt. 18, 3857–3862 (1979).
    [PubMed]
  31. L. Li, Y. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
    [CrossRef] [PubMed]
  32. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
    [CrossRef] [PubMed]
  33. J. Ward, “Multilayer blooming process including precoating of the substrate used for monitoring,” U.S. Patent3,645,771 (29February1972).
  34. E. Pelletier, P. Giacomo, “Contrôle optique pendant la préparation d’empilements de couches minces diélectriques,” Le Vide 157, 1–9 (1972).
  35. A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).
  36. V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).
  37. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
    [CrossRef]
  38. H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
    [CrossRef]
  39. H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
    [CrossRef]
  40. J. A. Dobrowolski, A. Waldorf, “Manufacture of all-dielectric interference filters with layers of arbitrary thickness and refractive index,” J. Opt. Soc. Am. 60, 725 (1970).
  41. T. Skettrup, “Optical monitoring of nonquarterwave stacks,” Opt. Eng. 26, 1175–1181 (1987).
  42. G. J. Kopeć, “Thickness of the layers of multilayer nonquarterwave interference filters controlled by direct level monitoring,” Opt. Appl. 17, 33–37 (1987).
  43. C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25, 753–760 (1986).
    [CrossRef] [PubMed]
  44. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  45. J. B. Theeten, D. E. Aspnes, “Ellipsometry in thin film analysis,” Annu. Rev. Mater. Sci. 11, 97–122 (1981).
    [CrossRef]
  46. H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).
  47. Z. Zhu, W. Li, Y. Hua, “Monitoring the arbitrary thickness of optical thin films and their error simulation: a method,” Appl. Opt. 24, 1693–1695 (1985).
    [CrossRef] [PubMed]
  48. M. S. Brown, “The computation of growth charts and the effect of layer thickness variations for thin film interference filters,” Rep. for Australian Defence Scientific Service WRE-TN-1311 (AP) (Department of Defence, Australia, Salisbury, Australia, 1974).
  49. B. Vidal, “Change of optical properties during the monitoring of quarterwave multilayers,” Opt. Commun. 31, 259–262 (1979).
    [CrossRef]
  50. J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
    [CrossRef] [PubMed]
  51. X.-Q. Hu, Y.-M. Chen, J.-F. Tang, “Apparatus for wideband monitoring of optical coatings and its uses,” Appl. Opt. 28, 2886–2888 (1989).
    [CrossRef] [PubMed]
  52. R. R. Willey, “Optical thickness monitoring sensitivity improvement using graphical methods,” Appl. Opt. 26, 729–737 (1987).
    [CrossRef] [PubMed]
  53. A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).
  54. M. Lardon, H. Selhofer, “Thin film production with a new fully automated optical thickness monitoring system,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 10–14 (1986).
  55. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  56. D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
    [CrossRef]
  57. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von hetarogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).
  58. L. E. Scales, Introduction of Non-Linear Optimization (Springer-Verlag, New York, 1985), pp. 110–118.
  59. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.
  60. J. J. Walls, “A Gaussian tolerance technique for multilayer optical coatings,” National Technical Information Service Rep. AD/A-002 596 1–19 (National Technical Information Service, Springfield, Va., 1974), pp. 1–19.
  61. V. A. Efremenko, “Methods for estimating the influence of the departure from design parameters on the optical properties of interference coatings,” Sov. J. Quantum Electron. 6, 289–293 (1976).
    [CrossRef]
  62. W. P. Thoeni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
    [CrossRef]
  63. V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).
  64. N. V. Grishina, A. V. Tikhonravov, “Evaluation of the deviations in the spectral characteristics of optical coatings,” Opt. Spectrosc. (USSR) 58, 115–116 (1985).
  65. G. J. Kopec, “Simulation of production runs of antireflection coating for fibre-communication optics,” Optik 74, 140–141 (1986).
  66. H. Zorc, “Optimum multilayer design selection in relation to production errors,” Vacuum 37, 101–102 (1987).
    [CrossRef]
  67. J. Leeuwenburgh, H. Salomons, A. de Geus, “A flexible on-line correction method for automated coating processes,” in Thin Film Technologies III, K. H. Guenther, H. K. Palker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 96–105 (1988).
  68. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  69. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24, 457–460 (1985).
    [CrossRef] [PubMed]
  70. J. A. Dobrowolski, “Comparison of the Fourier transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986).
    [CrossRef] [PubMed]
  71. L. Sossi, “A method for the synthesis of multilayer dielectric interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 229–237 (1974). An English translation of this paper is available from the Translation Services of the Canada Institute for Scientific & Technical Information, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
  72. L. Sossi, “On the theory of the synthesis of multilayer dielectric filters,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 25, 171–176 (1976). An English translation is available; see Ref. 71.

1990 (1)

1989 (4)

1988 (3)

J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
[CrossRef] [PubMed]

J. A. Dobrowolski, “Computer design of optical coatings,” Thin Solid Films 163, 97–100 (1988).
[CrossRef]

H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).

1987 (4)

T. Skettrup, “Optical monitoring of nonquarterwave stacks,” Opt. Eng. 26, 1175–1181 (1987).

G. J. Kopeć, “Thickness of the layers of multilayer nonquarterwave interference filters controlled by direct level monitoring,” Opt. Appl. 17, 33–37 (1987).

H. Zorc, “Optimum multilayer design selection in relation to production errors,” Vacuum 37, 101–102 (1987).
[CrossRef]

R. R. Willey, “Optical thickness monitoring sensitivity improvement using graphical methods,” Appl. Opt. 26, 729–737 (1987).
[CrossRef] [PubMed]

1986 (4)

C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25, 753–760 (1986).
[CrossRef] [PubMed]

J. A. Dobrowolski, “Comparison of the Fourier transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986).
[CrossRef] [PubMed]

G. J. Kopec, “Simulation of production runs of antireflection coating for fibre-communication optics,” Optik 74, 140–141 (1986).

H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A 4, 418–422 (1986).
[CrossRef]

1985 (3)

1984 (2)

V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).

H. K. Pulker, “Optical coatings: status of the art and recent developments,” Le Vide 223, 395–404 (1984).

1982 (5)

D. King, G. R. Hoffman, “Microcomputer control of thin film alloy deposition,” Vacuum 32, 695–700 (1982).
[CrossRef]

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

W. P. Thoeni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

1981 (7)

J. B. Theeten, D. E. Aspnes, “Ellipsometry in thin film analysis,” Annu. Rev. Mater. Sci. 11, 97–122 (1981).
[CrossRef]

P. S. Burggraaf, “Deposition rate monitoring for thin film process control,” Semicond. Int. 4(10), 59–78 (1981).

P. Bousquet, E. Pelletier, “Optical thin film monitoring—recent advances and limitations,” Thin Solid Films 77, 165–179 (1981).
[CrossRef]

V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).

A. Bloom, “Refining and optimization in multilayers,” Appl. Opt. 20, 66–73 (1981).
[CrossRef] [PubMed]

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

1979 (4)

1978 (2)

1977 (1)

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

1976 (5)

D. J. Sandoz, “Automatic computer control of the manufacture of thin-film optical devices,” Proc. IEEE 123, 445–450 (1976).
[CrossRef]

H. K. Pulker, “Progress in monitoring thin film thickness with quartz crystal resonators,” Thin Solid Films 32, 27–33 (1976).
[CrossRef]

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[CrossRef]

V. A. Efremenko, “Methods for estimating the influence of the departure from design parameters on the optical properties of interference coatings,” Sov. J. Quantum Electron. 6, 289–293 (1976).
[CrossRef]

L. Sossi, “On the theory of the synthesis of multilayer dielectric filters,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 25, 171–176 (1976). An English translation is available; see Ref. 71.

1974 (2)

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

L. Sossi, “A method for the synthesis of multilayer dielectric interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 229–237 (1974). An English translation of this paper is available from the Translation Services of the Canada Institute for Scientific & Technical Information, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

1973 (2)

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
[CrossRef]

1972 (2)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

E. Pelletier, P. Giacomo, “Contrôle optique pendant la préparation d’empilements de couches minces diélectriques,” Le Vide 157, 1–9 (1972).

1971 (1)

E. Girardet, “Automatisierung der Herstellung in Hochvakuum aufgedampfter, dünner Schichten,” Jahrb. Opt. Feinmech.195–211 (1971).

1970 (1)

J. A. Dobrowolski, A. Waldorf, “Manufacture of all-dielectric interference filters with layers of arbitrary thickness and refractive index,” J. Opt. Soc. Am. 60, 725 (1970).

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von hetarogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Aguilera, J.

Aguilera, J. A.

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

J. B. Theeten, D. E. Aspnes, “Ellipsometry in thin film analysis,” Annu. Rev. Mater. Sci. 11, 97–122 (1981).
[CrossRef]

Astakhov, V. G.

V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Baumeister, P.

Belkind, A.

Bloom, A.

Borgogno, J. P.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1986).

Bousquet, P.

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

P. Bousquet, E. Pelletier, “Optical thin film monitoring—recent advances and limitations,” Thin Solid Films 77, 165–179 (1981).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Brown, M. S.

M. S. Brown, “The computation of growth charts and the effect of layer thickness variations for thin film interference filters,” Rep. for Australian Defence Scientific Service WRE-TN-1311 (AP) (Department of Defence, Australia, Salisbury, Australia, 1974).

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von hetarogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Burggraaf, P. S.

P. S. Burggraaf, “Deposition rate monitoring for thin film process control,” Semicond. Int. 4(10), 59–78 (1981).

Chen, Y.-M.

Coursen, D.

de Geus, A.

J. Leeuwenburgh, H. Salomons, A. de Geus, “A flexible on-line correction method for automated coating processes,” in Thin Film Technologies III, K. H. Guenther, H. K. Palker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 96–105 (1988).

Dobrowolski, J. A.

J. A. Dobrowolski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. Belkind, V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824–2831 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
[CrossRef] [PubMed]

J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
[CrossRef] [PubMed]

J. A. Dobrowolski, “Computer design of optical coatings,” Thin Solid Films 163, 97–100 (1988).
[CrossRef]

J. A. Dobrowolski, “Comparison of the Fourier transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986).
[CrossRef] [PubMed]

J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
[CrossRef] [PubMed]

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[CrossRef]

J. A. Dobrowolski, A. Waldorf, “Manufacture of all-dielectric interference filters with layers of arbitrary thickness and refractive index,” J. Opt. Soc. Am. 60, 725 (1970).

J. A. Dobrowolski, “Usual and unusual applications of optical thin films,” in Thin Films for Optical Coatings, K. H. Guenther, ed. (Springer-Verlag, New York, 1991), Vol. 1.

Effron, M. S.

M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
[CrossRef]

Efremenko, V. A.

V. A. Efremenko, “Methods for estimating the influence of the departure from design parameters on the optical properties of interference coatings,” Sov. J. Quantum Electron. 6, 289–293 (1976).
[CrossRef]

Farrow, C. H.

M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.

Flory, F.

Fornier, A.

Furman, Sh. A.

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

Giacomo, P.

E. Pelletier, P. Giacomo, “Contrôle optique pendant la préparation d’empilements de couches minces diélectriques,” Le Vide 157, 1–9 (1972).

Gibson, D. R.

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

Girardet, E.

E. Girardet, “Automatisierung der Herstellung in Hochvakuum aufgedampfter, dünner Schichten,” Jahrb. Opt. Feinmech.195–211 (1971).

Goldstein, F. T.

Grishina, N. V.

N. V. Grishina, A. V. Tikhonravov, “Evaluation of the deviations in the spectral characteristics of optical coatings,” Opt. Spectrosc. (USSR) 58, 115–116 (1985).

Gustafson, D. E.

Hammann, K.-H.

H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).

Herrmann, R.

A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).

R. Herrmann, A. Zöller, “Automated optical coating processes with optical thickness monitoring,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 2–9 (1986).

Ho, F. C.

Hoffman, G. R.

D. King, G. R. Hoffman, “Microcomputer control of thin film alloy deposition,” Vacuum 32, 695–700 (1982).
[CrossRef]

Holm, C.

Hu, X.-Q.

Hua, Y.

Katsnel’son, L. B.

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

Kemp, R. A.

Khomyakova, F. T.

V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).

King, D.

D. King, G. R. Hoffman, “Microcomputer control of thin film alloy deposition,” Vacuum 32, 695–700 (1982).
[CrossRef]

Klug, W.

A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).

Kopec, G. J.

G. J. Kopeć, “Thickness of the layers of multilayer nonquarterwave interference filters controlled by direct level monitoring,” Opt. Appl. 17, 33–37 (1987).

G. J. Kopec, “Simulation of production runs of antireflection coating for fibre-communication optics,” Optik 74, 140–141 (1986).

Koss, V. A.

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Lardon, M.

M. Lardon, H. Selhofer, “Thin film production with a new fully automated optical thickness monitoring system,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 10–14 (1986).

Lazarides, B.

Leeuwenburgh, J.

J. Leeuwenburgh, H. Salomons, A. de Geus, “A flexible on-line correction method for automated coating processes,” in Thin Film Technologies III, K. H. Guenther, H. K. Palker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 96–105 (1988).

Li, L.

Li, W.

Lissberger, P. H.

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

Lowe, D.

Macleod, H. A.

H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A 4, 418–422 (1986).
[CrossRef]

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986).
[CrossRef]

Pelletier, E.

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

P. Bousquet, E. Pelletier, “Optical thin film monitoring—recent advances and limitations,” Thin Solid Films 77, 165–179 (1981).
[CrossRef]

B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

B. Vidal, E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with minicomputer allowing correction of thickness errors,” Appl. Opt. 18, 3857–3862 (1979).
[PubMed]

B. Vidal, A. Fornier, E. Pelletier, “Optical monitoring of nonquarterwave multilayer coatings,” Appl. Opt. 17, 1038–1047 (1978).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

E. Pelletier, P. Giacomo, “Contrôle optique pendant la préparation d’empilements de couches minces diélectriques,” Le Vide 157, 1–9 (1972).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.

Pulker, H. K.

H. K. Pulker, “Optical coatings: status of the art and recent developments,” Le Vide 223, 395–404 (1984).

H. K. Pulker, “Progress in monitoring thin film thickness with quartz crystal resonators,” Thin Solid Films 32, 27–33 (1976).
[CrossRef]

H. K. Pulker, “Thickness measurement, rate control and automation in thin film coating technology,” in Thin Film Technologies I, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.401, 100–108 (1983).

Richmond, D.

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

Roche, P.

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

Salomons, H.

J. Leeuwenburgh, H. Salomons, A. de Geus, “A flexible on-line correction method for automated coating processes,” in Thin Film Technologies III, K. H. Guenther, H. K. Palker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 96–105 (1988).

Salter, I.

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

Sandoz, D. J.

D. J. Sandoz, “Automatic computer control of the manufacture of thin-film optical devices,” Proc. IEEE 123, 445–450 (1976).
[CrossRef]

Scales, L. E.

L. E. Scales, Introduction of Non-Linear Optimization (Springer-Verlag, New York, 1985), pp. 110–118.

Schneider, V.

H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).

Schwiecker, H.

H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).

Selhofer, H.

M. Lardon, H. Selhofer, “Thin film production with a new fully automated optical thickness monitoring system,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 10–14 (1986).

Skettrup, T.

T. Skettrup, “Optical monitoring of nonquarterwave stacks,” Opt. Eng. 26, 1175–1181 (1987).

Sossi, L.

L. Sossi, “On the theory of the synthesis of multilayer dielectric filters,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 25, 171–176 (1976). An English translation is available; see Ref. 71.

L. Sossi, “A method for the synthesis of multilayer dielectric interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 229–237 (1974). An English translation of this paper is available from the Translation Services of the Canada Institute for Scientific & Technical Information, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

Southwell, W. H.

Sparks, D. G.

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

Staroverov, G. I.

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

Steckelmacher, W.

W. Steckelmacher, “Thin film monitoring techniques,” in Thin Film Microelectronics, L. Holland, ed. (Chapman & Hall, London, 1965).

Tang, J.-F.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.

Theeten, J. B.

J. B. Theeten, D. E. Aspnes, “Ellipsometry in thin film analysis,” Annu. Rev. Mater. Sci. 11, 97–122 (1981).
[CrossRef]

Thelen, A.

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

Thoeni, W. P.

W. P. Thoeni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

Tikhonravov, A. V.

N. V. Grishina, A. V. Tikhonravov, “Evaluation of the deviations in the spectral characteristics of optical coatings,” Opt. Spectrosc. (USSR) 58, 115–116 (1985).

Titcomb, F. R.

M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
[CrossRef]

Torskaya, L. K.

V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).

Uchaikin, A. G.

V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).

van der Laan, C. J.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.

Vidal, B.

Waldorf, A.

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, A. Waldorf, “Manufacture of all-dielectric interference filters with layers of arbitrary thickness and refractive index,” J. Opt. Soc. Am. 60, 725 (1970).

Walls, J. J.

J. J. Walls, “A Gaussian tolerance technique for multilayer optical coatings,” National Technical Information Service Rep. AD/A-002 596 1–19 (National Technical Information Service, Springfield, Va., 1974), pp. 1–19.

Ward, J.

J. Ward, “Multilayer blooming process including precoating of the substrate used for monitoring,” U.S. Patent3,645,771 (29February1972).

Willey, R. R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1986).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

Yen, Y.

Yurchuk, A. I.

V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).

Zabezhinskiy, A. D.

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

Zavada, V. S.

V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).

Zhu, Z.

Zöller, A.

A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).

R. Herrmann, A. Zöller, “Automated optical coating processes with optical thickness monitoring,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 2–9 (1986).

Zorc, H.

H. Zorc, “Optimum multilayer design selection in relation to production errors,” Vacuum 37, 101–102 (1987).
[CrossRef]

Zültzke, W.

A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).

Am. J. Phys. (1)

D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Ann. Phys. (Leipzig) (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von hetarogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–679 (1935).

Annu. Rev. Mater. Sci. (1)

J. B. Theeten, D. E. Aspnes, “Ellipsometry in thin film analysis,” Annu. Rev. Mater. Sci. 11, 97–122 (1981).
[CrossRef]

Appl. Opt. (19)

B. Vidal, A. Fornier, E. Pelletier, “Optical monitoring of nonquarterwave multilayer coatings,” Appl. Opt. 17, 1038–1047 (1978).
[CrossRef] [PubMed]

J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
[CrossRef] [PubMed]

C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982 (1979).
[CrossRef] [PubMed]

B. Vidal, A. Fornier, E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18, 3851–3856 (1979).
[PubMed]

B. Vidal, E. Pelletier, “Nonquarterwave multilayer filters: optical monitoring with minicomputer allowing correction of thickness errors,” Appl. Opt. 18, 3857–3862 (1979).
[PubMed]

A. Bloom, “Refining and optimization in multilayers,” Appl. Opt. 20, 66–73 (1981).
[CrossRef] [PubMed]

H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20, 82–89 (1981).
[CrossRef] [PubMed]

J. P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, P. Roche, “Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films,” Appl. Opt. 20, 90–94 (1981).
[CrossRef] [PubMed]

W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24, 457–460 (1985).
[CrossRef] [PubMed]

Z. Zhu, W. Li, Y. Hua, “Monitoring the arbitrary thickness of optical thin films and their error simulation: a method,” Appl. Opt. 24, 1693–1695 (1985).
[CrossRef] [PubMed]

C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25, 753–760 (1986).
[CrossRef] [PubMed]

J. A. Dobrowolski, “Comparison of the Fourier transform and flip-flop thin-film synthesis methods,” Appl. Opt. 25, 1966–1972 (1986).
[CrossRef] [PubMed]

R. R. Willey, “Optical thickness monitoring sensitivity improvement using graphical methods,” Appl. Opt. 26, 729–737 (1987).
[CrossRef] [PubMed]

J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Research on thin film anticounterfeiting coatings at the National Research Council of Canada,” Appl. Opt. 28, 2702–2717 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. Belkind, V. A. Koss, “Merit functions for more effective thin film calculations,” Appl. Opt. 28, 2824–2831 (1989).
[CrossRef] [PubMed]

X.-Q. Hu, Y.-M. Chen, J.-F. Tang, “Apparatus for wideband monitoring of optical coatings and its uses,” Appl. Opt. 28, 2886–2888 (1989).
[CrossRef] [PubMed]

L. Li, Y. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
[CrossRef] [PubMed]

J. A. Dobrowolski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990).
[CrossRef] [PubMed]

Eesti NSV Tead. Akad. Toim. Fuus. Mat. (2)

L. Sossi, “A method for the synthesis of multilayer dielectric interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 229–237 (1974). An English translation of this paper is available from the Translation Services of the Canada Institute for Scientific & Technical Information, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

L. Sossi, “On the theory of the synthesis of multilayer dielectric filters,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 25, 171–176 (1976). An English translation is available; see Ref. 71.

J. Opt. Soc. Am. (1)

J. A. Dobrowolski, A. Waldorf, “Manufacture of all-dielectric interference filters with layers of arbitrary thickness and refractive index,” J. Opt. Soc. Am. 60, 725 (1970).

J. Vac. Sci. Technol. (1)

M. S. Effron, C. H. Farrow, F. R. Titcomb, “Thin film manufacturing by computer control,” J. Vac. Sci. Technol. 10, 80–82 (1973).
[CrossRef]

J. Vac. Sci. Technol. A (1)

H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A 4, 418–422 (1986).
[CrossRef]

Jahrb. Opt. Feinmech. (1)

E. Girardet, “Automatisierung der Herstellung in Hochvakuum aufgedampfter, dünner Schichten,” Jahrb. Opt. Feinmech.195–211 (1971).

Le Vide (2)

H. K. Pulker, “Optical coatings: status of the art and recent developments,” Le Vide 223, 395–404 (1984).

E. Pelletier, P. Giacomo, “Contrôle optique pendant la préparation d’empilements de couches minces diélectriques,” Le Vide 157, 1–9 (1972).

Opt. Acta (3)

H. A. Macleod, D. Richmond, “The effect of errors in the optical monitoring of narrow-band all-dielectric thin film optical filters,” Opt. Acta 21, 429–443 (1974).
[CrossRef]

H. A. Macleod, E. Pelletier, “Error compensation mechanisms in some thin film monitoring systems,” Opt. Acta 24, 907–930 (1977).
[CrossRef]

D. R. Gibson, P. H. Lissberger, I. Salter, D. G. Sparks, “A high-precision adaptation of the ‘turning point’ method of monitoring the optical thickness of dielectric layers using microprocessors,” Opt. Acta 29, 221–234 (1982).
[CrossRef]

Opt. Appl. (1)

G. J. Kopeć, “Thickness of the layers of multilayer nonquarterwave interference filters controlled by direct level monitoring,” Opt. Appl. 17, 33–37 (1987).

Opt. Commun. (1)

B. Vidal, “Change of optical properties during the monitoring of quarterwave multilayers,” Opt. Commun. 31, 259–262 (1979).
[CrossRef]

Opt. Eng. (1)

T. Skettrup, “Optical monitoring of nonquarterwave stacks,” Opt. Eng. 26, 1175–1181 (1987).

Opt. Spectrosc. (USSR) (1)

N. V. Grishina, A. V. Tikhonravov, “Evaluation of the deviations in the spectral characteristics of optical coatings,” Opt. Spectrosc. (USSR) 58, 115–116 (1985).

Optik (1)

G. J. Kopec, “Simulation of production runs of antireflection coating for fibre-communication optics,” Optik 74, 140–141 (1986).

Proc. IEEE (1)

D. J. Sandoz, “Automatic computer control of the manufacture of thin-film optical devices,” Proc. IEEE 123, 445–450 (1976).
[CrossRef]

Semicond. Int. (1)

P. S. Burggraaf, “Deposition rate monitoring for thin film process control,” Semicond. Int. 4(10), 59–78 (1981).

Sov. J. Opt. Technol. (3)

A. D. Zabezhinskiy, L. B. Katsnel’son, G. I. Staroverov, Sh. A. Furman, “Automatic film thickness monitor for making multilayer coatings,” Sov. J. Opt. Technol. 40, 304–307 (1973).

V. G. Astakhov, F. T. Khomyakova, A. I. Yurchuk, “Automation of the process for deposition of interference coatings on optical elements,” Sov. J. Opt. Technol. 48, 31–33 (1981).

V. S. Zavada, L. K. Torskaya, A. G. Uchaikin, “Statistical modelling of the deposition of thin-film optical coatings for a separate monitoring method,” Sov. J. Opt. Technol. 51, 283–284 (1984).

Sov. J. Quantum Electron. (1)

V. A. Efremenko, “Methods for estimating the influence of the departure from design parameters on the optical properties of interference coatings,” Sov. J. Quantum Electron. 6, 289–293 (1976).
[CrossRef]

Tech. Messen (1)

H. Schwiecker, K.-H. Hammann, V. Schneider, “Ellipsometrische in-situ-Kontrolle für Dünschicht-Processe,” Tech. Messen 55, 346–352 (1988).

Thin Solid Films (7)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

W. P. Thoeni, “Deposition of optical coatings: process control and automation,” Thin Solid Films 88, 385–397 (1982).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: monitoring process allowing the auto-correction of thickness errors,” Thin Solid Films 13, 285–290 (1972).
[CrossRef]

H. K. Pulker, “Progress in monitoring thin film thickness with quartz crystal resonators,” Thin Solid Films 32, 27–33 (1976).
[CrossRef]

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[CrossRef]

J. A. Dobrowolski, “Computer design of optical coatings,” Thin Solid Films 163, 97–100 (1988).
[CrossRef]

P. Bousquet, E. Pelletier, “Optical thin film monitoring—recent advances and limitations,” Thin Solid Films 77, 165–179 (1981).
[CrossRef]

Vacuum (2)

D. King, G. R. Hoffman, “Microcomputer control of thin film alloy deposition,” Vacuum 32, 695–700 (1982).
[CrossRef]

H. Zorc, “Optimum multilayer design selection in relation to production errors,” Vacuum 37, 101–102 (1987).
[CrossRef]

Other (18)

J. Leeuwenburgh, H. Salomons, A. de Geus, “A flexible on-line correction method for automated coating processes,” in Thin Film Technologies III, K. H. Guenther, H. K. Palker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1019, 96–105 (1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

A. Zöller, R. Herrmann, W. Klug, W. Zültzke, “Optical monitoring: comparison of different monitoring strategies with respect to the resulting reproducibility to the completed layer systems,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 21–26 (1985).

M. Lardon, H. Selhofer, “Thin film production with a new fully automated optical thickness monitoring system,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 10–14 (1986).

M. S. Brown, “The computation of growth charts and the effect of layer thickness variations for thin film interference filters,” Rep. for Australian Defence Scientific Service WRE-TN-1311 (AP) (Department of Defence, Australia, Salisbury, Australia, 1974).

H. K. Pulker, “Thickness measurement, rate control and automation in thin film coating technology,” in Thin Film Technologies I, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.401, 100–108 (1983).

R. Herrmann, A. Zöller, “Automated optical coating processes with optical thickness monitoring,” in Thin Film Technologies II, J. R. Jacobsson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.652, 2–9 (1986).

J. A. Dobrowolski, “Usual and unusual applications of optical thin films,” in Thin Films for Optical Coatings, K. H. Guenther, ed. (Springer-Verlag, New York, 1991), Vol. 1.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1986).

A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989).

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (Macmillan, New York, 1986).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).

J. Ward, “Multilayer blooming process including precoating of the substrate used for monitoring,” U.S. Patent3,645,771 (29February1972).

W. Steckelmacher, “Thin film monitoring techniques,” in Thin Film Microelectronics, L. Holland, ed. (Chapman & Hall, London, 1965).

L. E. Scales, Introduction of Non-Linear Optimization (Springer-Verlag, New York, 1985), pp. 110–118.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1989), Chap. 14.

J. J. Walls, “A Gaussian tolerance technique for multilayer optical coatings,” National Technical Information Service Rep. AD/A-002 596 1–19 (National Technical Information Service, Springfield, Va., 1974), pp. 1–19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic block diagram of the program optifab.

Fig. 2
Fig. 2

Calculated performance of a 41-layer Nb2O5/SiO2 edge filter (between two semi-infinite quartz media) with a 10-nm transition from the transmission to the rejection region (a). The system was obtained by the refinement of the multilayer indicated. The calculated performance of the same filter, on a quartz substrate with a vacuum incident medium, is shown in (b) over an extended spectral region. This corresponds to a measurement made by a wideband optical monitor in vacuum at the end of deposition.

Fig. 3
Fig. 3

Simulation of the sputtering process for a 10-nm edge filter. Ten simulation runs were made for each different case by using the standard deviations shown for transmittance errors, calibration errors, and random errors. In (a) and (b) no corrections for deposition errors were made, giving rise to the large MFsimulation values. In (c), however, by using the same deposition errors as in (b), the remaining layers were reoptimized after the deposition of each layer. See text for further details. MF represents merit function.

Fig. 4
Fig. 4

Sensitivities of three different monitoring methods for the deposition termination of typical (a) SiO2 and (b) Nb2O5 layers. While there is a decrease in the termination sensitivity in going from the most sensitive wavelength alone to 64 wavelengths, this is more than offset by the decrease in the noise leading to a more accurate termination.

Fig. 5
Fig. 5

Simulation of the ion-plating process for a 10-nm edge filter. Ten simulation runs were made for each different case by using the same standard deviation for transmittance errors. In (a) and (b) the overshoot was fully and partially compensated, respectively. In (c), by using the same termination criterion as in (b) but with reoptimization, a good final performance was achieved. See text for further details.

Fig. 6
Fig. 6

Simulation of an electron-beam gun deposition process for a 10-nm edge filter in which the layers are now porous. Ten simulation runs were made for each case, with no thickness or transmittance errors introduced; however, the porosity of the Nb2O5 material was allowed to vary. In (a), without reoptimization, there is a large spread in the cutoff edge of the filter. With reoptimization, the errors have been partially compensated as seen in (b) and (c), which are based on the actual and the determined layer thicknesses and porosities, respectively. See text for further details.

Fig. 7
Fig. 7

Simulation of an electron-beam gun deposition process for a 10-nm edge filter. Ten simulation runs were made for each case in which now both porosity and transmittance errors have been introduced. In (a) and (b) the results are shown without and with reoptimization, respectively. While the reoptimization has helped, it is not as effective as in previous cases because of errors in the parameter determination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M 2 = 1 m i = 1 m ( Q i T - Q i δ Q i ) 2 ,
( Q i , λ j m - Q i , λ j c δ Q i , λ j m ) = x k 1 δ Q i , λ j m · Q i , λ j c x k Δ x k , j = 1 m ; i = 1 p ,

Metrics