Abstract

When designing diffractive lenses, a high-diffraction efficiency at a particular design wavelength is often the most important criterion. Recently it has become of interest to consider lens designs that split incident light predominantly into two orders for use as bifocal contact lenses or intraocular lenses. Surface-relief profiles on contact and intraocular lenses are subject to many practical constraints in addition to requiring high efficiencies at the two focal points. A new lens design combining a binary-amplitude absorption profile with a unique nonparabolic surface-relief profile is proposed to satisfy these constraints.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kirtz, “Phase zone plates for x-rays and the extreme UV,” J. Opt. Soc. Am. 64, 301–309 (1971).
    [Crossref]
  2. R. Tatchyn, P. Csonka, I. Landau, “A unified approach to the theory and design of optimum transmission diffraction systems in the soft x-ray range,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena II, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.503, 168–180 (1984).
  3. G. Ueberschaar, “Eine neuartige Bifokal—Contactlinse,” presented at the Sixteenth WVA Conference, Norderney, 1965.
  4. G. Forst, “Untersuchunge über die Brauchbarkeit von Kreisgittern als Sehhilfe,” Augenoptiker 12, 9–17 (1966).
  5. A. L. Cohen, “Diffractive multifocal optical device,” U.S. Patent4,999,715 (26February1991).
  6. Kenro Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51, 17–20 (1961).
    [Crossref]
  7. H. Kyuragi, T. Urisu, “Higher-order suppressed phase zone plates,” Appl. Opt. 24, 1139–1141 (1985).
    [Crossref] [PubMed]
  8. P. R. King, “The design of diffractive surface relief lenses with more than one focus,” Acta Polytech. Scand. Appl. Phys. Ser. 149, 312–314 (1985).

1985 (2)

P. R. King, “The design of diffractive surface relief lenses with more than one focus,” Acta Polytech. Scand. Appl. Phys. Ser. 149, 312–314 (1985).

H. Kyuragi, T. Urisu, “Higher-order suppressed phase zone plates,” Appl. Opt. 24, 1139–1141 (1985).
[Crossref] [PubMed]

1971 (1)

1966 (1)

G. Forst, “Untersuchunge über die Brauchbarkeit von Kreisgittern als Sehhilfe,” Augenoptiker 12, 9–17 (1966).

1961 (1)

Cohen, A. L.

A. L. Cohen, “Diffractive multifocal optical device,” U.S. Patent4,999,715 (26February1991).

Csonka, P.

R. Tatchyn, P. Csonka, I. Landau, “A unified approach to the theory and design of optimum transmission diffraction systems in the soft x-ray range,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena II, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.503, 168–180 (1984).

Forst, G.

G. Forst, “Untersuchunge über die Brauchbarkeit von Kreisgittern als Sehhilfe,” Augenoptiker 12, 9–17 (1966).

King, P. R.

P. R. King, “The design of diffractive surface relief lenses with more than one focus,” Acta Polytech. Scand. Appl. Phys. Ser. 149, 312–314 (1985).

Kirtz, J.

Kyuragi, H.

Landau, I.

R. Tatchyn, P. Csonka, I. Landau, “A unified approach to the theory and design of optimum transmission diffraction systems in the soft x-ray range,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena II, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.503, 168–180 (1984).

Miyamoto, Kenro

Tatchyn, R.

R. Tatchyn, P. Csonka, I. Landau, “A unified approach to the theory and design of optimum transmission diffraction systems in the soft x-ray range,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena II, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.503, 168–180 (1984).

Ueberschaar, G.

G. Ueberschaar, “Eine neuartige Bifokal—Contactlinse,” presented at the Sixteenth WVA Conference, Norderney, 1965.

Urisu, T.

Acta Polytech. Scand. Appl. Phys. Ser. (1)

P. R. King, “The design of diffractive surface relief lenses with more than one focus,” Acta Polytech. Scand. Appl. Phys. Ser. 149, 312–314 (1985).

Appl. Opt. (1)

Augenoptiker (1)

G. Forst, “Untersuchunge über die Brauchbarkeit von Kreisgittern als Sehhilfe,” Augenoptiker 12, 9–17 (1966).

J. Opt. Soc. Am. (2)

Other (3)

R. Tatchyn, P. Csonka, I. Landau, “A unified approach to the theory and design of optimum transmission diffraction systems in the soft x-ray range,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moire Phenomena II, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.503, 168–180 (1984).

G. Ueberschaar, “Eine neuartige Bifokal—Contactlinse,” presented at the Sixteenth WVA Conference, Norderney, 1965.

A. L. Cohen, “Diffractive multifocal optical device,” U.S. Patent4,999,715 (26February1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Surface-relief profile for the parabolic phase plate.

Fig. 2
Fig. 2

(a) Surface-relief thickness for the parabolic profile as a function of the radius squared and (b) the associated throughput efficiencies as a function of its phase shift in wavelengths at the maximum-relief depth.

Fig. 3
Fig. 3

Surface-relief profile for the cosine-step phase plate.

Fig. 4
Fig. 4

(a) Surface-relief thickness for the cosine-step profile as a function of the radius squared and (b) the associated throughput efficiencies as a function of its phase shift in wavelengths at the maximum-relief depth.

Fig. 5
Fig. 5

Sinusoidal absorption profile.

Fig. 6
Fig. 6

BAG absorption profile.

Fig. 7
Fig. 7

Efficiencies for the half-wave parabolic-phase profile in conjunction with a BAG absorption profile.

Fig. 8
Fig. 8

Transmission profile for the cosine-step surface-relief profile in conjunction with a BAG absorption profile.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

r q = 2 q λ d .
f m = d / m .
I m = T m × T m * ,
T m = 0 2 λ d exp { i k ( n - n ) Δ [ ρ ] } exp { i u ρ } d ρ ,
Δ [ ρ ] = Δ 0 { 1 - ( ρ / r 1 2 ) } ,
I m = sinc 2 ( m - α ) ,
Δ [ ρ ] = Δ 0 { 0.5 + 0.5 cos ( π ρ / r 1 2 ) } .
I 0 = J 0 2 ( ζ ) ,
I 1 = { 4 [ sin ( ζ ) - ζ cos ( ζ ) ] / ( π ζ 2 ) + J 2 ( ζ ) } 2 ,
T m = 0 2 λ d A [ ρ ] exp { i k ( n - n ) Δ [ ρ ] } exp { i u ρ } d ρ .
A [ ρ ] = sin ( ρ / r 1 2 ) .
I m = T m × T m * = 0.25             for m = 0 , 1 ,
I m = T m × T m * = 0.00             for m 0 , 1.
Tr = { 1 / 2 λ d } 0 2 λ d A 2 [ ρ ] d ρ ,
E m = I m / Tr .
A [ ρ ] = 1.0 for 0.0 < R < ( ρ / r 1 2 ) < S < 1 , = 0.0 otherwise .
I m = Tr 2 sinc 2 { ( m - 1 / 2 ) Tr } ,
E m = Tr sinc 2 { ( m - 1 / 2 ) Tr } .
π Tr = tan ( π Tr / 2 ) .
Δ [ ρ ] = Δ 0 { 0.5 + 0.5 cos [ π ρ / ( S r 1 2 ) ] } .

Metrics