Abstract

Typical traps when displaying the partial optical performances of a progressive-addition lens (PAL) are presented. The PAL is briefly described first. Then the ray-tracing software is described in detail. It permits the computation of the optical performance of the PAL in typical cases. For a reference PAL optical partial performances, which are computed in different cases, are displayed. The plots show that the performance depends on the computation conditions, that displaying only some areas of the partial performance may lead to traps for the characterization of the PAL, and that coma must be taken into account to obtain a precise measurement.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Le Grand, Optique Physiologique (éditions de la Revue d’optique, Paris, 1969), t. 1.
  2. B. Maitenaz, “Image rétinienne donnée par un verre correcteur de puissance progressive,” Revu. Opt. Theor. Instrum. 46(5), 233–241 (1967).
  3. B. Bourdoncle, J. P. Chauveau, J. L. Mercier, “Ray-tracing through progressive ophthalmic lens,” in 1990 International Lens Design Conference, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1354, 194–199 (1990).
  4. C. De Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
    [CrossRef]
  5. T. N. E. Greville, Theory and Applications of Spline Functions (Academic, San Diego, Calif., 1969).
  6. F. Ahsbahs, J. L. Mercier, “Modern design of unifocal lenses,” in Ophthalmic and visual optics, Vol. 2 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 72–75.
  7. D. Malacara, Optical Shop Testing (Wiley, New York, 1980).
  8. Societe des Lunetiers, “Ophthalmic lenses with a progressively varying focal power,” U.S. Patent3,687,528, (29August1972); Essilor International, “Ophthalmic lenses with a progressively varying focal power,” U.S. Patent3,910,691 (17October1975).
  9. J. W. Figoski, “Aberration characteristics of non symmetric optical systems,” in International Lens Design Conference, W. H. Taylor, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.554, 104–111 (1985).
    [CrossRef]
  10. D. Atchison, “Modern optical design assessment and spectacle lenses,” Opt. Acta 32, 607–634 (1985).
    [CrossRef]

1985

D. Atchison, “Modern optical design assessment and spectacle lenses,” Opt. Acta 32, 607–634 (1985).
[CrossRef]

1967

B. Maitenaz, “Image rétinienne donnée par un verre correcteur de puissance progressive,” Revu. Opt. Theor. Instrum. 46(5), 233–241 (1967).

Ahsbahs, F.

F. Ahsbahs, J. L. Mercier, “Modern design of unifocal lenses,” in Ophthalmic and visual optics, Vol. 2 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 72–75.

Atchison, D.

D. Atchison, “Modern optical design assessment and spectacle lenses,” Opt. Acta 32, 607–634 (1985).
[CrossRef]

Bourdoncle, B.

B. Bourdoncle, J. P. Chauveau, J. L. Mercier, “Ray-tracing through progressive ophthalmic lens,” in 1990 International Lens Design Conference, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1354, 194–199 (1990).

Chauveau, J. P.

B. Bourdoncle, J. P. Chauveau, J. L. Mercier, “Ray-tracing through progressive ophthalmic lens,” in 1990 International Lens Design Conference, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1354, 194–199 (1990).

De Boor, C.

C. De Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
[CrossRef]

Figoski, J. W.

J. W. Figoski, “Aberration characteristics of non symmetric optical systems,” in International Lens Design Conference, W. H. Taylor, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.554, 104–111 (1985).
[CrossRef]

Greville, T. N. E.

T. N. E. Greville, Theory and Applications of Spline Functions (Academic, San Diego, Calif., 1969).

Le Grand, Y.

Y. Le Grand, Optique Physiologique (éditions de la Revue d’optique, Paris, 1969), t. 1.

Maitenaz, B.

B. Maitenaz, “Image rétinienne donnée par un verre correcteur de puissance progressive,” Revu. Opt. Theor. Instrum. 46(5), 233–241 (1967).

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, New York, 1980).

Mercier, J. L.

F. Ahsbahs, J. L. Mercier, “Modern design of unifocal lenses,” in Ophthalmic and visual optics, Vol. 2 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 72–75.

B. Bourdoncle, J. P. Chauveau, J. L. Mercier, “Ray-tracing through progressive ophthalmic lens,” in 1990 International Lens Design Conference, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1354, 194–199 (1990).

Opt. Acta

D. Atchison, “Modern optical design assessment and spectacle lenses,” Opt. Acta 32, 607–634 (1985).
[CrossRef]

Revu. Opt. Theor. Instrum.

B. Maitenaz, “Image rétinienne donnée par un verre correcteur de puissance progressive,” Revu. Opt. Theor. Instrum. 46(5), 233–241 (1967).

Other

B. Bourdoncle, J. P. Chauveau, J. L. Mercier, “Ray-tracing through progressive ophthalmic lens,” in 1990 International Lens Design Conference, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1354, 194–199 (1990).

C. De Boor, A Practical Guide to Splines (Springer-Verlag, New York, 1978).
[CrossRef]

T. N. E. Greville, Theory and Applications of Spline Functions (Academic, San Diego, Calif., 1969).

F. Ahsbahs, J. L. Mercier, “Modern design of unifocal lenses,” in Ophthalmic and visual optics, Vol. 2 of 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 72–75.

D. Malacara, Optical Shop Testing (Wiley, New York, 1980).

Societe des Lunetiers, “Ophthalmic lenses with a progressively varying focal power,” U.S. Patent3,687,528, (29August1972); Essilor International, “Ophthalmic lenses with a progressively varying focal power,” U.S. Patent3,910,691 (17October1975).

J. W. Figoski, “Aberration characteristics of non symmetric optical systems,” in International Lens Design Conference, W. H. Taylor, D. T. Moore, ed., Proc. Soc. Photo-Opt. Instrum. Eng.554, 104–111 (1985).
[CrossRef]

Y. Le Grand, Optique Physiologique (éditions de la Revue d’optique, Paris, 1969), t. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

Difference between the best-fit sphere and the aspheric.

Fig. 2
Fig. 2

Model of the lens-plus-eye system.

Fig. 3
Fig. 3

Definition of α and β for the chief ray.

Fig. 4
Fig. 4

Definition of the chief ray and the corresponding position of the stop.

Fig. 5
Fig. 5

Computation of the local power and local astigmatism.

Fig. 6
Fig. 6

Simulation of an astigmometer.

Fig. 7
Fig. 7

Simulation of the real lens-plus-eye system.

Fig. 8
Fig. 8

Simulation of the classical focimeter.

Fig. 9
Fig. 9

Contour plot of the mean sphere.

Fig. 10
Fig. 10

Contour plot of the power of the real lens-plus-eye system.

Fig. 11
Fig. 11

Contour plot of the power of the astigmometer.

Fig. 12
Fig. 12

Contour plot of the power of the classical focimeter.

Fig. 13
Fig. 13

Contour plot of the cylinder.

Fig. 14
Fig. 14

Contour plot of the astigmatism of the real lens-plus-eye system.

Fig. 15
Fig. 15

Contour plot of the astigmatism of the astigmometer.

Fig. 16
Fig. 16

Contour plot of the astigmatism of the classical focimeter.

Fig. 17
Fig. 17

Grid-form plot of the real lens-plus-eye system.

Fig. 18
Fig. 18

Grid-form plot of the astigmometer.

Fig. 19
Fig. 19

Grid-form plot of the classical focimeter.

Fig. 20
Fig. 20

Spot diagram.

Fig. 21
Fig. 21

Optical path difference map.

Fig. 22
Fig. 22

Expansion into Zernike polynomials of the 5-mn-diameter wavefront.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

mean sphere = ( n - 1 ) × ( 1 / R 1 + 1 / R 2 ) / 2 - B ,
cylinder = ( n - 1 ) × ( 1 / R 1 - 1 / R 2 ) ,
T = 1 / J t ,
S = 1 / J s .
D ( α , β ) = ( T + S ) / 2 ,
A ( α , β ) = abs ( T - S ) .

Metrics