Abstract

A new type of mode-index waveguide lens is presented that has acircular gradient-index boundaries. These lenses have relatively large apertures and are fabricated by physical vapor deposition by using organic materials. A deposition mask that is accurately defined by using lithographic processing techniques was used to shape the lens boundaries during the addition of the lens to the waveguide. A comprehensive analysis of the lens system is presented. After adjusting the model to have aberrations that are comparable with those of the fabricated lens, spot size and sidelobe intensity values were nearly identical for the theoretical and experimental systems. The application of these lenses to optical recording technology is demonstrated by the generation of focus and tracking error signals.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524–1535 (1987).
    [Crossref]
  2. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
    [Crossref]
  3. G. Bouwhuis, J. J. M. Bruat, “Video disk player optics,” Appl. Opt. 17, 1993–2000 (1978).
    [Crossref] [PubMed]
  4. R. Ulrich, R. J. Martin, “Geometric optics in thin film light guides,” Appl. Opt. 9, 2077–2084 (1971).
    [Crossref]
  5. S. K. Yao, D. B. Anderson, R. R. August, B. R. Youmans, C. M. Oania, “Guided-wave optical thin-film Luneberg lenses: fabrication technique and properties,” Appl. Opt. 18, 4067–4079 (1979).
    [Crossref] [PubMed]
  6. B. Chen, O. G. Ramer, “Diffraction-limited geodesic lens for integrated optic circuit,” IEEE J. Quantum Electron. QE-15, 853–860 (1979).
    [Crossref]
  7. G. Hatakoshi, S. Tankara, “Grating lenses for integrated optics,” Opt. Lett. 2, 142–144 (1978).
    [Crossref] [PubMed]
  8. W. S. C. Chang, P. R. Ashley, “Fresnel lenses in optical waveguides,” IEEE J. Quantum Electron. QE-16, 744–754 (1980).
    [Crossref]
  9. R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
    [Crossref]
  10. D. T. Zang, C. S. Tsai, “Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing,” Appl. Opt. 25, 2264–2271 (1986).
    [Crossref] [PubMed]
  11. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), Chap. 3, p. 31.
  12. D. W. Hewak, J. W. Y. Lit, “Generalized dispersion properties of a four-layer thin-film waveguide,” Appl. Opt. 26, 833–841 (1987).
    [Crossref] [PubMed]
  13. J. F. Revelli, “Mode analysis and prism coupling for multilayered optical waveguides,” Appl. Opt. 20, 3158–3167 (1981).
    [Crossref] [PubMed]
  14. P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987).
    [Crossref]
  15. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1982), pp. 387–406.
  16. Available from Optical Research Associates, Pasadena, Calif. Code V is a trademark of Optical Research Associates.
  17. A. Sharma, D. V. Kumar, A. K. Ghotak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21, 984–987 (1982).
    [Crossref] [PubMed]
  18. H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
    [Crossref]
  19. S. L. Lalama, J. E. Sorn, K. D. Singer, “Organic materials for integrated optics,” in Integrated Optical Circuit Engineering, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 168–172 (1985).
  20. J. C. Brazas, “Vacuum-coated organic recording media,” J. Imag. Sci. 32, 56–59 (1988).
  21. B. J. Bartholomeusz, K. H. Muller, M. R. Jacobsen, “Computer simulation of the nucleation and growth of optical coatings,” in Modeling of Optical Thin Films, M. R. Jacobsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.821, 2–35 (1988).
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5, p. 7.
  23. K. Suzuki, I. Ogura, T. Ose, “Measurement of spherical aberrations using a solid-state image sensor,” Appl. Opt. 18, 3866–3871 (1979).
    [PubMed]
  24. G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.
  25. D. Kay, Eastman Kodak Company, Rolchester, N.Y. 14650 (personal communication, 1989).

1988 (1)

J. C. Brazas, “Vacuum-coated organic recording media,” J. Imag. Sci. 32, 56–59 (1988).

1987 (3)

D. W. Hewak, J. W. Y. Lit, “Generalized dispersion properties of a four-layer thin-film waveguide,” Appl. Opt. 26, 833–841 (1987).
[Crossref] [PubMed]

P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987).
[Crossref]

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524–1535 (1987).
[Crossref]

1986 (2)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

D. T. Zang, C. S. Tsai, “Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing,” Appl. Opt. 25, 2264–2271 (1986).
[Crossref] [PubMed]

1982 (1)

1981 (1)

1980 (1)

W. S. C. Chang, P. R. Ashley, “Fresnel lenses in optical waveguides,” IEEE J. Quantum Electron. QE-16, 744–754 (1980).
[Crossref]

1979 (3)

1978 (2)

1977 (1)

R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
[Crossref]

1975 (1)

H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
[Crossref]

1971 (1)

R. Ulrich, R. J. Martin, “Geometric optics in thin film light guides,” Appl. Opt. 9, 2077–2084 (1971).
[Crossref]

Aagard, R. L.

R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
[Crossref]

Anderson, D. B.

Ashley, P. R.

W. S. C. Chang, P. R. Ashley, “Fresnel lenses in optical waveguides,” IEEE J. Quantum Electron. QE-16, 744–754 (1980).
[Crossref]

August, R. R.

Bartholomeusz, B. J.

B. J. Bartholomeusz, K. H. Muller, M. R. Jacobsen, “Computer simulation of the nucleation and growth of optical coatings,” in Modeling of Optical Thin Films, M. R. Jacobsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.821, 2–35 (1988).

Bonishins, G.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Bouwhuis, G.

Braat, J.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Brazas, J. C.

J. C. Brazas, “Vacuum-coated organic recording media,” J. Imag. Sci. 32, 56–59 (1988).

Bruat, J. J. M.

Chandross, E. A.

H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
[Crossref]

Chang, W. S. C.

W. S. C. Chang, P. R. Ashley, “Fresnel lenses in optical waveguides,” IEEE J. Quantum Electron. QE-16, 744–754 (1980).
[Crossref]

Chen, B.

B. Chen, O. G. Ramer, “Diffraction-limited geodesic lens for integrated optic circuit,” IEEE J. Quantum Electron. QE-15, 853–860 (1979).
[Crossref]

Ghotak, A. K.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5, p. 7.

Hatakoshi, G.

Hewak, D. W.

Huigser, A.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), Chap. 3, p. 31.

Jacobsen, M. R.

B. J. Bartholomeusz, K. H. Muller, M. R. Jacobsen, “Computer simulation of the nucleation and growth of optical coatings,” in Modeling of Optical Thin Films, M. R. Jacobsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.821, 2–35 (1988).

Kay, D.

D. Kay, Eastman Kodak Company, Rolchester, N.Y. 14650 (personal communication, 1989).

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

Kumar, D. V.

Lalama, S. L.

S. L. Lalama, J. E. Sorn, K. D. Singer, “Organic materials for integrated optics,” in Integrated Optical Circuit Engineering, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 168–172 (1985).

Lit, J. W. Y.

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1982), pp. 387–406.

Martin, R. J.

R. Ulrich, R. J. Martin, “Geometric optics in thin film light guides,” Appl. Opt. 9, 2077–2084 (1971).
[Crossref]

Muller, K. H.

B. J. Bartholomeusz, K. H. Muller, M. R. Jacobsen, “Computer simulation of the nucleation and growth of optical coatings,” in Modeling of Optical Thin Films, M. R. Jacobsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.821, 2–35 (1988).

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

Oania, C. M.

Ogura, I.

Ose, T.

Pasman, J.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Ramaswamy, R. V.

P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987).
[Crossref]

Ramer, O. G.

B. Chen, O. G. Ramer, “Diffraction-limited geodesic lens for integrated optic circuit,” IEEE J. Quantum Electron. QE-15, 853–860 (1979).
[Crossref]

Revelli, J. F.

Schonhamer Immik, K.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Sharma, A.

Shepherd, T. L.

R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
[Crossref]

Singer, K. D.

S. L. Lalama, J. E. Sorn, K. D. Singer, “Organic materials for integrated optics,” in Integrated Optical Circuit Engineering, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 168–172 (1985).

Sorn, J. E.

S. L. Lalama, J. E. Sorn, K. D. Singer, “Organic materials for integrated optics,” in Integrated Optical Circuit Engineering, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 168–172 (1985).

Suchoski, P. G.

P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987).
[Crossref]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

Suzuki, K.

Tankara, S.

Taylor, H. F.

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524–1535 (1987).
[Crossref]

Tomlinson, W. J.

H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
[Crossref]

Tsai, C. S.

Ulmer, R. P.

R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
[Crossref]

Ulrich, R.

R. Ulrich, R. J. Martin, “Geometric optics in thin film light guides,” Appl. Opt. 9, 2077–2084 (1971).
[Crossref]

Ura, S.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

Van Rosmalen, G.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

Weber, H. P.

H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
[Crossref]

Yao, S. K.

Youmans, B. R.

Zang, D. T.

Appl. Opt. (8)

IEEE J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optical disk pick-up device,” IEEE J. Lightwave Technol. LT-4, 913–918 (1986).
[Crossref]

IEEE J. Quantum Electron. (3)

W. S. C. Chang, P. R. Ashley, “Fresnel lenses in optical waveguides,” IEEE J. Quantum Electron. QE-16, 744–754 (1980).
[Crossref]

B. Chen, O. G. Ramer, “Diffraction-limited geodesic lens for integrated optic circuit,” IEEE J. Quantum Electron. QE-15, 853–860 (1979).
[Crossref]

P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987).
[Crossref]

J. Appl. Phys. (1)

R. L. Aagard, T. L. Shepherd, R. P. Ulmer, “Electron-beam and photolithographic fabrication of guided-wave optical components,” J. Appl. Phys. 48, 4149–4151 (1977).
[Crossref]

J. Imag. Sci. (1)

J. C. Brazas, “Vacuum-coated organic recording media,” J. Imag. Sci. 32, 56–59 (1988).

Opt. Lett. (1)

Opt. Quantum Electron. (1)

H. P. Weber, W. J. Tomlinson, E. A. Chandross, “Organic materials for integrated optics,” Opt. Quantum Electron. 7, 465–473 (1975).
[Crossref]

Proc. IEEE (1)

H. F. Taylor, “Application of guided-wave optics in signal processing and sensing,” Proc. IEEE 75, 1524–1535 (1987).
[Crossref]

Other (8)

S. L. Lalama, J. E. Sorn, K. D. Singer, “Organic materials for integrated optics,” in Integrated Optical Circuit Engineering, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 168–172 (1985).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1984), Chap. 3, p. 31.

D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1982), pp. 387–406.

Available from Optical Research Associates, Pasadena, Calif. Code V is a trademark of Optical Research Associates.

B. J. Bartholomeusz, K. H. Muller, M. R. Jacobsen, “Computer simulation of the nucleation and growth of optical coatings,” in Modeling of Optical Thin Films, M. R. Jacobsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.821, 2–35 (1988).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5, p. 7.

G. Bonishins, J. Braat, A. Huigser, J. Pasman, G. Van Rosmalen, K. Schonhamer Immik, Principles of Optical Disk Systems, (Hilger, London, 1987), Chap. 2, pp. 48–53.

D. Kay, Eastman Kodak Company, Rolchester, N.Y. 14650 (personal communication, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Lens system showing (a) the lens profile and method of fabrication and (b) a top view showing the shape and location of the lens tapers.

Fig. 2
Fig. 2

Drawing of the deposition mask and optical transmission micrograph of the mask edge that is used to define the lens boundary.

Fig. 3
Fig. 3

Analysis of lens tapers: (a) contact profilometer trace of a taper resulting from a stationary deposition mask edge, (b) profilometer trace of a taper that is produced with linear translation of the mask edge with added film thickness, and (c) the calculated N gradient for the 1-mm linear thickness taper.

Fig. 4
Fig. 4

Fabricated lenses demonstrating (a) the thickness profile of the lens that is observed by using interferometry (λ = 632.8 nm) and (b) the low-defect population and inherent speckle that is observed by imaging light that is scattered from waveguiding (λ = 830 nm).

Fig. 5
Fig. 5

Simplified schematic of the optical system that is used to determine lens performance and generate focus and tracking error signals. PBS is the polarization beam splitter.

Fig. 6
Fig. 6

Intensity profile at the aperture of the lens.

Fig. 7
Fig. 7

Focal spots observed by using (a) a 1-mm aperture and (b) a 4.3-mm aperture at the experimental best focus (—) and the paraxial image line of the model (– - – - –).

Fig. 8
Fig. 8

Experimental (—) and model (– - – - –) aberrations observed (a) at the paraxial focus and (b) at a large defocus. An adjustment to the boundary of the lens was made to create spherical aberrations in the model.

Fig. 9
Fig. 9

Optical systems used for the analysis of optical recording error signals showing (a) the lens system that is used for half-aperture FES and (b) the lens–prism system that is used for the dual-half-aperture FESd and TESd.

Fig. 10
Fig. 10

Observed spots at a zero error signal and the simulated detectors to show the size and position for (a) a half-aperture waveguide system and (b) a dual-half-aperture system.

Fig. 11
Fig. 11

Experimental FES data from using a nongrooved mirror M1 (a) half-aperture waveguide (—) and Kodak’s optical head (– - – - –) systems and (b) a dual-half-aperture waveguide system.

Fig. 12
Fig. 12

Experimental FESd and TESd for translation of a grooved mirror that is perpendicular to the optical axis while at the nominal best focus of the objective lens.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n sub N n wg ,
z sag = c y 2 / { 1 + [ 1 - ( 1 + k 2 ) c 2 y 2 ] 1 / 2 } + A y 4 + B y 6 + C y 8 + D y 10 ,
N ( z ) = N wg + C 1 z t + C 2 z t 2 + C 3 z t 3 + C 4 z t 4 ,
FES = A - B .
FES d = ( A + D ) - ( B + C ) ,
TES d = ( A + B ) - ( C + D ) ,
rf d = A + B + C + D .

Metrics