Abstract

The technique of line-locked wavelength modulation with 2f detection is applied to the measurement of water vapor concentration and absorption line parameters by using an 820-nm AlGaAs communications diode laser. Measurements of the 2f signal as a function of the modulation amplitude yield accurate concentrations and line parameters over a pressure range of an order of magnitude and half-widths from 0.02 to 0.15 cm−1. Using two different spectral lines, we determined concentrations and line parameters with 1% precision, and the absolute accuracy of the line parameters is 3% or better. The results have been used to calculate calibration curves for a diode laser humidity monitor.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
    [CrossRef]
  2. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead–salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3737 (1987).
    [CrossRef] [PubMed]
  3. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  4. L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application of water vapor,” Appl. Opt. 27, 2071–2077 (1988).
    [CrossRef] [PubMed]
  5. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]
  6. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  7. R. D. May, C. R. Webster, “Balloon-borne laser spectrometer measurements of NO2 with gas absorption sensitivities below 10−5,” Appl. Opt. 29, 5042–5044 (1990).
    [CrossRef] [PubMed]
  8. T. J. Johnson, F. G. Weinhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
    [CrossRef] [PubMed]
  9. V. Pevtschin, S. Ezekiel, “Investigation of the absolute stability of water-vapor-stabilized semiconductor laser,” Opt. Lett. 12, 172–174 (1987).
    [CrossRef] [PubMed]
  10. M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
    [CrossRef]
  11. J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  12. J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt functions and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
    [CrossRef]
  13. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989).
    [CrossRef]
  14. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
    [CrossRef] [PubMed]
  15. HITRAN database, 1991 ed. (National Climatic Center, National Oceanic and Atmospheric Administration, Digital Product Section, Federal Building, Asheville, N.C. 28801).
  16. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. CamyPeyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  17. R. A. Toth, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1990).
  18. N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
    [CrossRef]
  19. S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

1991 (2)

1990 (2)

1989 (3)

C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
[CrossRef] [PubMed]

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989).
[CrossRef]

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

1988 (3)

1987 (3)

1985 (1)

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1979 (1)

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt functions and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Adler-Golden, S.

S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Barbe, A.

Bien, F.

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

Browell, E. V.

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989).
[CrossRef]

Brown, L. R.

Bruce, D. M.

Burrows, J. P.

CamyPeyret, C.

Carlisle, C. B.

Cassidy, D. T.

Cooper, D. E.

Delaye, C.

Ezekiel, S.

Flaud, J.-M.

Gallagher, T. F.

Gamache, R. R.

Gehrtz, M.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Gersh, M. E.

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

Goldman, A.

Goldstein, N.

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Grossmann, B. E.

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989).
[CrossRef]

Harris, G. W.

Hartmann, J.-M.

Humlicek, J.

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt functions and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Husson, N.

Johnson, T. J.

Labrie, D.

J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lee, J.

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Lenth, W.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Loewenstein, M.

M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

May, R. D.

Pevtschin, V.

Pickett, H. M.

Poynter, R. L.

Reid, J.

J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

Riris, H.

Rothman, L. S.

Silver, J. A.

Smith, M. A. H.

Stanton, A. C.

Taine, J.

Toth, R. A.

Wang, L.-G.

Warren, R. E.

Webster, C. R.

Weinhold, F. G.

Zakin, M. R.

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

Appl. Opt. (8)

D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead–salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3737 (1987).
[CrossRef] [PubMed]

A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988).
[CrossRef] [PubMed]

L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application of water vapor,” Appl. Opt. 27, 2071–2077 (1988).
[CrossRef] [PubMed]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

R. D. May, C. R. Webster, “Balloon-borne laser spectrometer measurements of NO2 with gas absorption sensitivities below 10−5,” Appl. Opt. 29, 5042–5044 (1990).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Weinhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. CamyPeyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Appl. Phys. B (1)

J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985).
[CrossRef]

Drying Technol. (1)

N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991).
[CrossRef]

J. Mol. Spectrosc. (1)

B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988).
[CrossRef]

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt functions and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Opt. Lett. (2)

Other (3)

R. A. Toth, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1990).

HITRAN database, 1991 ed. (National Climatic Center, National Oceanic and Atmospheric Administration, Digital Product Section, Federal Building, Asheville, N.C. 28801).

S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Amplitude dependence of the 2 f signal from Eq. (1).

Fig. 3
Fig. 3

Representative 2f data (dots) and least-squares Voigt fits (solid curves) for the 12 195.19-cm−1 line of pure water vapor: T = 386 K, P = 256-Torr H2O for the broad curve; T = 376 K, P = 25.4-Torr H2O for the narrow curve.

Fig. 4
Fig. 4

Measured strengths for the 12 195.19- and 12 212.07-cm−1 water lines (normalized to 296 K). The horizontal lines represent the average values for each water line above p = 0.2 atm.

Fig. 5
Fig. 5

Measured self-broadening coefficients for the 12 195.19- and 12 212.07-cm−1 water lines. The horizontal lines represent the average values for each data set.

Fig. 6
Fig. 6

Calibration curves for monitoring of water vapor at different modulation amplitudes (ν = 12 195.19 cm−1, T = 382 K, l = 41 cm). Data points are taken from scans such as those shown in Fg. 3.

Fig. 7
Fig. 7

Calibration curves as in Fig. 6 but with air added for a total pressure of 1 atm.

Tables (1)

Tables Icon

Table I Comparison of Experimental and Literature Water Vapor Line Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 2 f = I 0 [ - - π / 4 π / 4 α ( Θ ) d Θ + π / 4 3 π / 4 α ( Θ ) d Θ - 3 π / 4 5 π / 4 α ( Θ ) d Θ + 5 π / 4 7 π / 4 α ( Θ ) d Θ ] / 4 2 .
α ( Θ ) = 1 - exp [ - k a ( ν 0 + A sin Θ ) ρ l ] ,
γ L = i ρ i γ 0 i .

Metrics