Abstract

The spectral response of broadband reflection holograms in dichromated gelatin is studied; conditions for obtaining 100-nm bandwidth and 80% diffraction efficiency holograms are given. The structure of these holograms is discussed, and the scanning electron microscope is used to investigate fringe-spacing variations.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. McGrew, “Color control in dichromated gelatin reflection holograms,” in Recent Advances in Holography, T. Lee, P. Tamura, eds., Proc. Soc. Photo-Opt. Instrum. Eng.215, 24–31 (1980).
  2. D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).
  3. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
  4. T. Kubota, “Control of the reconstruction wavelength of Lippman holograms recorded in dichromated gelatin,” Appl. Opt. 28, 1845–1849 (1989).
    [Crossref] [PubMed]

1989 (1)

1980 (1)

D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).

Friesem, A. A.

D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).

Kubota, T.

McGrew, S. P.

S. P. McGrew, “Color control in dichromated gelatin reflection holograms,” in Recent Advances in Holography, T. Lee, P. Tamura, eds., Proc. Soc. Photo-Opt. Instrum. Eng.215, 24–31 (1980).

Samoilovich, D. M.

D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).

Zeichner, A.

D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).

Photogr. Sci. Eng. (1)

D. M. Samoilovich, A. Zeichner, A. A. Friesem, “The mechanism of volume hologram formation in dichromated gelatin,” Photogr. Sci. Eng. 24, 161–166 (1980).

Other (1)

S. P. McGrew, “Color control in dichromated gelatin reflection holograms,” in Recent Advances in Holography, T. Lee, P. Tamura, eds., Proc. Soc. Photo-Opt. Instrum. Eng.215, 24–31 (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectra of reflection holograms in DCG for various exposures and swelling temperatures: (a) 20°C, (b) 30°C, (c) 35°C.

Fig. 2
Fig. 2

Maximum and minimum values of index modulation and the relative variation in the fringe spacing of broadband reflection holograms in DCG as a function of exposure.

Fig. 3
Fig. 3

Theoretical (solid curves) and computed (dashed curves) diffraction efficiencies of broadband reflection holograms in DCG as a function of wavelength for various exposures.

Fig. 4
Fig. 4

Cross section of a broadband reflection hologram in DCG as seen by electron-microscopy: (a) upper part, (b) lower part.

Tables (1)

Tables Icon

Table I Preparation and Processing Procedures of DCG Plates

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 1 ( z ) = n 1 ( T ) - Δ n 1 [ 1 - ( z / T ) ] r ,
G ( z ) = G ( 0 ) - Δ G ( z / T ) s ,

Metrics