Abstract

A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
    [CrossRef]
  2. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
    [CrossRef]
  3. J. C. Pourney, D. Renaut, A. Orszag, “Raman-lidar humidity sounding of the atmospheric boundary layer,” Appl. Opt. 18, 1141–1148 (1979).
    [CrossRef]
  4. S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
    [CrossRef]
  5. G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
    [CrossRef]
  6. S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
    [CrossRef]
  7. C. E. Junge, J. E. Manson, “Stratospheric aerosol studies,” J. Geophys. Res. 66, 2163–2182 (1961).
    [CrossRef]
  8. G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
    [CrossRef]
  9. J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
    [CrossRef]
  10. R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
    [CrossRef]
  11. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
    [CrossRef]
  12. H. Inaba, T. Kobayasi, “Laser Raman radar–laser Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
    [CrossRef]
  13. J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
    [CrossRef]
  14. C. M. Penney, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
    [CrossRef]
  15. R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley, New York, 1984), p. 108.
  16. E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Proc. 183 (1976).
  17. S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
    [CrossRef]
  18. R. W. Hamming, Digital Filters (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 22.
  19. R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 785.
  20. SR 400 Manual (Stanford Research Systems, Inc., Sunnyvale, Calif., 1987).
  21. J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977).
    [CrossRef]
  22. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar measurements,” Appl. Opt. 18, 3783–3797 (1979).
    [PubMed]
  23. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
    [CrossRef] [PubMed]
  24. J. W. Fitzgerald, W. A. Hoppel, “Equilibrium size of atmospheric aerosol particles as a function of relative humidity: calculations based on measured aerosol properties,” in Hygroscopic Aerosols, L. Ruhnke, A. Deepak, eds. (A. Deepak, Hampton, Va., 1984), p. 2.

1991 (1)

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

1989 (2)

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

1988 (2)

R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
[CrossRef]

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

1985 (1)

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

1982 (1)

1979 (2)

1977 (1)

J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977).
[CrossRef]

1976 (3)

C. M. Penney, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Proc. 183 (1976).

1972 (1)

H. Inaba, T. Kobayasi, “Laser Raman radar–laser Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
[CrossRef]

1970 (1)

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

1969 (1)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

1964 (1)

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

1961 (1)

C. E. Junge, J. E. Manson, “Stratospheric aerosol studies,” J. Geophys. Res. 66, 2163–2182 (1961).
[CrossRef]

Boers, R.

J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
[CrossRef]

Bribes, J. L.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

Cooney, J. A.

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

Dorian, P. B.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

Evans, R. D.

R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 785.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Proc. 183 (1976).

Ferrare, R.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

Fiocco, G.

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

Fitzgerald, J. W.

J. W. Fitzgerald, W. A. Hoppel, “Equilibrium size of atmospheric aerosol particles as a function of relative humidity: calculations based on measured aerosol properties,” in Hygroscopic Aerosols, L. Ruhnke, A. Deepak, eds. (A. Deepak, Hampton, Va., 1984), p. 2.

Gaufres, R.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

Grams, G.

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

Grams, G. W.

Hamming, R. W.

R. W. Hamming, Digital Filters (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 22.

Hart, W.

R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
[CrossRef]

Hart, W. D.

J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

Hoppel, W. A.

J. W. Fitzgerald, W. A. Hoppel, “Equilibrium size of atmospheric aerosol particles as a function of relative humidity: calculations based on measured aerosol properties,” in Hygroscopic Aerosols, L. Ruhnke, A. Deepak, eds. (A. Deepak, Hampton, Va., 1984), p. 2.

Inaba, H.

H. Inaba, T. Kobayasi, “Laser Raman radar–laser Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
[CrossRef]

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

Junge, C. E.

C. E. Junge, J. E. Manson, “Stratospheric aerosol studies,” J. Geophys. Res. 66, 2163–2182 (1961).
[CrossRef]

Kaiser, J. F.

J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977).
[CrossRef]

Kobayasi, T.

H. Inaba, T. Kobayasi, “Laser Raman radar–laser Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
[CrossRef]

Koch, S. E.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

Lapp, M.

C. M. Penney, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Livingston, J. M.

Manson, J. E.

C. E. Junge, J. E. Manson, “Stratospheric aerosol studies,” J. Geophys. Res. 66, 2163–2182 (1961).
[CrossRef]

McCormick, M. P.

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar measurements,” Appl. Opt. 18, 3783–3797 (1979).
[PubMed]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley, New York, 1984), p. 108.

Melfi, S. H.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

Mitev, V.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Monan, M.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

Morley, B. M.

Orszag, A.

Patterson, E. M.

Penney, C. M.

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

C. M. Penney, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976).
[CrossRef]

Pourney, J. C.

Reed, W. A.

J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977).
[CrossRef]

Renaut, D.

Russell, P. B.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Proc. 183 (1976).

Skillman, W. C.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
[CrossRef]

Swissler, T. J.

Thomas, L.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Vaughan, G.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Wareing, D. P.

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Whiteman, D.

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969).
[CrossRef]

J. L. Bribes, R. Gaufres, M. Monan, M. Lapp, C. M. Penney, “Raman band contours for water vapor as a function of temperature,” Appl. Phys. Lett. 28(6), 336–337 (1976).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

S. H. Melfi, D. Whiteman, “Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar,” Bull. Am. Meteorol. Soc. 66, 1288–1292 (1985).
[CrossRef]

J. Appl. Meteorol. (4)

S. H. Melfi, D. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. D. Spinhirne, W. D. Hart, R. Boers, “Cloud top liquid water from lidar observations of marine stratocumulus,” J. Appl. Meteorol. 28, 81–90 (1989).
[CrossRef]

R. Boers, J. D. Spinhirne, W. Hart, “Lidar observations of the fine-scale variability of marine stratocumulus clouds,” J. Appl. Meteorol. 27, 797–810 (1988).
[CrossRef]

J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco, G. Grams, “Observations of the aerosol layer at 20 km by optical radar,” J. Atmos. Sci. 21, 323–324 (1964).
[CrossRef]

J. Geophys. Res. (1)

C. E. Junge, J. E. Manson, “Stratospheric aerosol studies,” J. Geophys. Res. 66, 2163–2182 (1961).
[CrossRef]

J. Opt. Soc. Am. (1)

Models of the Atmospheric Aerosols and Their Optical Properties (1)

E. P. Shettle, R. W. Fenn, Models of the Atmospheric Aerosols and Their Optical Properties, AGARD Proc. 183 (1976).

Mon. Weather Rev. (1)

S. E. Koch, P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, D. Whiteman, “Structure of an internal bore and dissipating gravity current as revealed by Raman lidar,” Mon. Weather Rev. 119, 857–887 (1991).
[CrossRef]

Optoelectronics (1)

H. Inaba, T. Kobayasi, “Laser Raman radar–laser Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optoelectronics 4, 101–123 (1972).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

G. Vaughan, D. P. Wareing, L. Thomas, V. Mitev, “Humidity measurements in the free troposphere using Raman backscatter,” Q. J. R. Meteorol. Soc. 114, 1471–1484 (1988).
[CrossRef]

Rev. Sci. Instrum. (1)

J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977).
[CrossRef]

Other (6)

R. M. Measures, Laser Remote Sensing Fundamentals and Applications (Wiley, New York, 1984), p. 108.

R. W. Hamming, Digital Filters (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 22.

R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955), p. 785.

SR 400 Manual (Stanford Research Systems, Inc., Sunnyvale, Calif., 1987).

H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
[CrossRef]

J. W. Fitzgerald, W. A. Hoppel, “Equilibrium size of atmospheric aerosol particles as a function of relative humidity: calculations based on measured aerosol properties,” in Hygroscopic Aerosols, L. Ruhnke, A. Deepak, eds. (A. Deepak, Hampton, Va., 1984), p. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Transmission correction curves for the water vapor mixing ratio and the aerosol backscattering ratio calculations as shown in Eqs. (5) and (7). The family of curves on the left represents the differential transmission correction that is required in the water vapor mixing ratio calculation for a range of optical depths. The corrections range from between 5 and 9% depending on the amount of aerosols that are present for a transmission path from the ground up to 7 km. The curve corresponding to τA = 0.00 represents the correction that is required when no aerosols are present, while the τA = 1.00 curve represents a quite hazy condition. In practice the correction is between these two limits. The family of curves on the right represents the correction that is required in the aerosol backscattering ratio calculation where the range of correction is between 11 and 22%.

Fig. 2
Fig. 2

Water vapor lidar system diagram: Discs, discriminators.

Fig. 3
Fig. 3

Water vapor channel data from 4 April 1989 that show the effect of the resolving time correction. Data that are acquired with a 10% neutral density filter in the optical path are normalized and plotted against data that are acquired in a normal full strength manner. The ρ = 0 curves correspond to the uncorrected full and reduced strength data. Note the divergence of the curves below an altitude of ~3 km. The ρ = 2.6 curves show the improved agreement of the data caused by the bandwidth correction. The curves begin to diverge below an altitude of ~1.7 km. These are 10-min data sets.

Fig. 4
Fig. 4

Two-minute A/D data profiles from the water vapor, nitrogen, and aerosol channels from 7 June 1987. The data have been background subtracted and range-square corrected.

Fig. 5
Fig. 5

Two-minute PC data profiles from the same 7 June 1987 time period as in Fig. 4. Note the good overall correspondence of the two data sets. The smoother nature of the PC data is apparent when compared with the A/D data in Fig. 4. Note also the higher altitude range of the PC data.

Fig. 6
Fig. 6

Two-minute profiles of the water vapor mixing ratio that is calculated from both the A/D and PC data on 7 June 1987. Note the smoother nature of the PC data. Note also that below ~ 1.5 km the PC data are count saturated and diverge from the A/D data.

Fig. 7
Fig. 7

Composite 2-min lidar water vapor mixing ratio profile from 7 June 1987 compared with a colocated radiosonde. The A/D and PC lidar data profiles have been joined at ~ 2 km. Note the overall good agreement except at 3 km, where the radiosonde is incapable of properly measuring moisture in regions where the RH is below ~ 20%.

Fig. 8
Fig. 8

Composite image of the water vapor mixing ratio that is derived from lidar measurements that were made during the night of 29–30 Sept. 1987. The vertical scale represents the altitude from the surface to nearly 7 km. The horizontal scale represents the time with measurements beginning before 2000 EDT and extending to almost 0600 EDT the next morning.

Fig. 9
Fig. 9

Composite aerosol backscattering ratio profile from 7 June 1987. The values of a backscattering ratio of less than 1.0 in the region below 500 m are caused by nonlinear crossover effects (see text).

Fig. 10
Fig. 10

Composite image of the lidar-derived aerosol backscattering ratio during the night of 29–30 September 1987.

Fig. 11
Fig. 11

The 0000 UTC surface chart on 30 Sept. 1987.

Fig. 12
Fig. 12

Composite image of RH during the night of 29–30 September 1987 that is derived from lidar measurements of the water vapor mixing ratio and radiosonde measurements of pressure and temperature. The horizontal and vertical scales are the same as in Fig. 1.

Tables (1)

Tables Icon

Table I Interference Filter Characteristics and Components

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S λ 0 ( z ) = k λ 0 z 2 [ σ R ( π ) n R ( z ) + σ A ( π ) n A ( z ) ] q 2 ( λ 0 , z 0 , z ) ,
S N , H ( z ) = k N z 2 σ N , H ( π ) n N , H ( z ) q ( λ 0 , z 0 , z ) q ( λ N , H , z 0 , z ) ,
S N , H ( z ) = k H z 2 σ N , H ( π ) n N , H ( z ) q ( λ 0 , z 0 , z ) q ( λ N , H , z 0 , z ) ,
exp ( - z 0 z α λ z ( z ) d z ) ,
w ( z ) = n H ( z ) n dry ( z ) M H M dry ,
w ( z ) = C w Δ q w ( z 0 , z ) S H ( z ) S N ( z ) ,
C w = k N k H σ N ( π ) σ H ( π ) M H M dry n N n dry
Δ q w ( z 0 , z ) = q ( λ N , z 0 , z ) q ( λ H , z 0 , z )
R ( λ 0 , z ) = β R ( z ) + β A ( z ) β R ( z ) = 1 + β A ( z ) β R ( z ) ,
β R ( z ) = σ R ( π ) n R ( z ) , β A ( z ) = σ A ( π ) n A ( z ) ,
R ( λ 0 , z ) = C R Δ q R ( z 0 , z ) S λ 0 ( z ) S N ( z ) ,
C R = k N k λ 0 σ N ( π ) n N ( z ) σ R ( π ) n R ( z )
Δ q R ( z 0 , z ) = q ( λ N , z 0 , z ) q ( λ A , z 0 , z )
R ( λ 0 , z ) = Δ q R ( z ) Δ q R ( z ) * S A ( z ) / S N ( z ) S A ( z * ) / S N ( z * ) = Δ q R ( z , z * ) S A ( z ) / S N ( z ) S A ( z * ) / S N ( z * ) ,
N real = N meas 1 - N meas ρ ,

Metrics