Abstract

A new design for a reflecting fiber-optic confocal microscope, FOCON, is presented in which the beam splitter of a conventional confocal microscope is replaced by a fiber-optic splitter, and the core of a single-mode fiber takes the place of both the source and detector pinholes. It is shown that FOCON has the same resolution characteristics as a conventional confocal microscope, and requires fewer optical components and only rough alignment. The microscope is robust and can be rapidly scanned in the x, y, and z directions through the simple movement of the end of an optical fiber.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  2. T. Wilson, A. R. Carlini, “Effect of detector displacement in confocal imaging systems,” Appl. Opt. 27, 3791–3799 (1988).
    [CrossRef] [PubMed]
  3. G. J. Brakenhoff, P. Blom, C. Bakker, “Confocal scanning light microscopy with high aperture optics,” in Proceedings of the Eleventh Congress of the International Commission for Optics (Insiuto de Optica “Daza de Valdes,” C.S.I.C. Sociedad Espanolade Optica, Serrano, Spain, 1978), pp. 215–218.
  4. T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987).
    [CrossRef] [PubMed]
  5. M. Glass, T. P. Dabbs, “The experimental effect of detector size on confocal lateral resolution,” J. Microsc. 164, 153–158 (1991).
    [CrossRef]
  6. T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors.” J. Microsc. 149, 51–66 (1988).
    [CrossRef]
  7. K. Carlsson, N. Aslund, “Confocal imaging for 3-D digital microscopy,” Appl. Opt. 26, 3232–3238 (1987).
    [CrossRef] [PubMed]
  8. W. B. Amos, J. G. White, M. Fordham, “Use of confocal imaging in the study of biological structures,” Appl. Opt. 26, 3239–3243 (1987).
    [CrossRef] [PubMed]
  9. D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B. 27, 211–213 (1982).
    [CrossRef]
  10. D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
    [CrossRef]
  11. M. Minsky, U.S. Patent3013467 (19December1961).
  12. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
    [CrossRef]
  13. M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
    [CrossRef]
  14. G. Q. Xiao, G. S. Kino, “A real-time confocal scanning optical microscope,” in Scanning Imaging Technology, L. Balk, T. Wilson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.809, 107–113 (1987).
  15. G. S. Kino, G. Q. Xiao, “Real-time scanning optical microscopes,” in Confocal Microscopy, T. Wilson, ed. (Pergamon, London, 1990), pp. 361–387.
  16. T. P. Dabbs, M. Glass, “Single mode fibers used as confocal microscope pinholes,” Appl. Opt. (to be published).
  17. T. P. Dabbs, Australian Provisional Patent PI9587/88 (1August1988).
  18. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)
  19. M. Glass, “Axial scanning in the fiber optic confocal microscope,” Lab. Note SN/128 (Commonwealth Scientific and Industrial Research Organization Division of Wool Technology, Sydney, 1991).
  20. T. P. Dabbs, B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc. 68, 563–569 (1985).
    [CrossRef]

1991

M. Glass, T. P. Dabbs, “The experimental effect of detector size on confocal lateral resolution,” J. Microsc. 164, 153–158 (1991).
[CrossRef]

1988

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors.” J. Microsc. 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Effect of detector displacement in confocal imaging systems,” Appl. Opt. 27, 3791–3799 (1988).
[CrossRef] [PubMed]

1987

1985

M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
[CrossRef]

T. P. Dabbs, B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc. 68, 563–569 (1985).
[CrossRef]

1982

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B. 27, 211–213 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

1968

Amos, W. B.

Aslund, N.

Bakker, C.

G. J. Brakenhoff, P. Blom, C. Bakker, “Confocal scanning light microscopy with high aperture optics,” in Proceedings of the Eleventh Congress of the International Commission for Optics (Insiuto de Optica “Daza de Valdes,” C.S.I.C. Sociedad Espanolade Optica, Serrano, Spain, 1978), pp. 215–218.

Blom, P.

G. J. Brakenhoff, P. Blom, C. Bakker, “Confocal scanning light microscopy with high aperture optics,” in Proceedings of the Eleventh Congress of the International Commission for Optics (Insiuto de Optica “Daza de Valdes,” C.S.I.C. Sociedad Espanolade Optica, Serrano, Spain, 1978), pp. 215–218.

Boyde, A.

M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
[CrossRef]

Brakenhoff, G. J.

G. J. Brakenhoff, P. Blom, C. Bakker, “Confocal scanning light microscopy with high aperture optics,” in Proceedings of the Eleventh Congress of the International Commission for Optics (Insiuto de Optica “Daza de Valdes,” C.S.I.C. Sociedad Espanolade Optica, Serrano, Spain, 1978), pp. 215–218.

Carlini, A. R.

Carlsson, K.

Dabbs, T. P.

M. Glass, T. P. Dabbs, “The experimental effect of detector size on confocal lateral resolution,” J. Microsc. 164, 153–158 (1991).
[CrossRef]

T. P. Dabbs, B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc. 68, 563–569 (1985).
[CrossRef]

T. P. Dabbs, M. Glass, “Single mode fibers used as confocal microscope pinholes,” Appl. Opt. (to be published).

T. P. Dabbs, Australian Provisional Patent PI9587/88 (1August1988).

Egger, M. D.

Fordham, M.

Galambos, R.

Glass, M.

M. Glass, T. P. Dabbs, “The experimental effect of detector size on confocal lateral resolution,” J. Microsc. 164, 153–158 (1991).
[CrossRef]

M. Glass, “Axial scanning in the fiber optic confocal microscope,” Lab. Note SN/128 (Commonwealth Scientific and Industrial Research Organization Division of Wool Technology, Sydney, 1991).

T. P. Dabbs, M. Glass, “Single mode fibers used as confocal microscope pinholes,” Appl. Opt. (to be published).

Hadravsky, M.

M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
[CrossRef]

M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
[CrossRef]

Hamilton, D. K.

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B. 27, 211–213 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

Kino, G. S.

G. S. Kino, G. Q. Xiao, “Real-time scanning optical microscopes,” in Confocal Microscopy, T. Wilson, ed. (Pergamon, London, 1990), pp. 361–387.

G. Q. Xiao, G. S. Kino, “A real-time confocal scanning optical microscope,” in Scanning Imaging Technology, L. Balk, T. Wilson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.809, 107–113 (1987).

Lawn, B. R.

T. P. Dabbs, B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc. 68, 563–569 (1985).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)

Minsky, M.

M. Minsky, U.S. Patent3013467 (19December1961).

Petran, M.

M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
[CrossRef]

M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)

White, J. G.

Wilson, T.

T. Wilson, A. R. Carlini, “Effect of detector displacement in confocal imaging systems,” Appl. Opt. 27, 3791–3799 (1988).
[CrossRef] [PubMed]

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors.” J. Microsc. 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987).
[CrossRef] [PubMed]

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B. 27, 211–213 (1982).
[CrossRef]

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Xiao, G. Q.

G. Q. Xiao, G. S. Kino, “A real-time confocal scanning optical microscope,” in Scanning Imaging Technology, L. Balk, T. Wilson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.809, 107–113 (1987).

G. S. Kino, G. Q. Xiao, “Real-time scanning optical microscopes,” in Confocal Microscopy, T. Wilson, ed. (Pergamon, London, 1990), pp. 361–387.

Appl. Opt.

Appl. Phys. B.

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B. 27, 211–213 (1982).
[CrossRef]

J. Am. Ceram. Soc.

T. P. Dabbs, B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc. 68, 563–569 (1985).
[CrossRef]

J. Appl. Phys.

D. K. Hamilton, T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[CrossRef]

J. Microsc.

M. Glass, T. P. Dabbs, “The experimental effect of detector size on confocal lateral resolution,” J. Microsc. 164, 153–158 (1991).
[CrossRef]

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors.” J. Microsc. 149, 51–66 (1988).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Scanning

M. Petran, M. Hadravsky, A. Boyde, “The tandem scanning reflected light microscope,” Scanning 7, 97–108 (1985).
[CrossRef]

Other

G. Q. Xiao, G. S. Kino, “A real-time confocal scanning optical microscope,” in Scanning Imaging Technology, L. Balk, T. Wilson, eds., Proc. Soc. Photo-Opt. Instrum. Eng.809, 107–113 (1987).

G. S. Kino, G. Q. Xiao, “Real-time scanning optical microscopes,” in Confocal Microscopy, T. Wilson, ed. (Pergamon, London, 1990), pp. 361–387.

T. P. Dabbs, M. Glass, “Single mode fibers used as confocal microscope pinholes,” Appl. Opt. (to be published).

T. P. Dabbs, Australian Provisional Patent PI9587/88 (1August1988).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983)

M. Glass, “Axial scanning in the fiber optic confocal microscope,” Lab. Note SN/128 (Commonwealth Scientific and Industrial Research Organization Division of Wool Technology, Sydney, 1991).

M. Minsky, U.S. Patent3013467 (19December1961).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

G. J. Brakenhoff, P. Blom, C. Bakker, “Confocal scanning light microscopy with high aperture optics,” in Proceedings of the Eleventh Congress of the International Commission for Optics (Insiuto de Optica “Daza de Valdes,” C.S.I.C. Sociedad Espanolade Optica, Serrano, Spain, 1978), pp. 215–218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the FOCON design for a confocal microscope.

Fig. 2
Fig. 2

Graph of the theoretical4 (solid curve) and experimental lateral resolution of FOCON as a function of normalized pinhole size; for graph-symbol definitions see Table I.

Fig. 3
Fig. 3

Graph of the theoretical4 (solid curve) and experimental axial resolution of FOCON as a function of normalized pinhole size; for graph-symbol definitions, see Table I.

Fig. 4
Fig. 4

Graphs of the signal at the detector resulting from the axial scan of a mirror through the diffraction-limited spot of a FOCON setup; (a) NAfiber > NAcollimating and (b) NAcollimating > NAfiber.

Fig. 5
Fig. 5

Graphs of the relationship between the position of the end of port 2 of the coupler and a front surface mirror axially placed to maximize the signal at the detector, for (a) the 1.5× lens as the collimator and the 5×a lens as the focuser and (b) the 5×a lens as the collimator and the 10× lens as the focuser.

Tables (1)

Tables Icon

Table I Lens Numerical Aperturesa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v p = 2 π r p sin ( α ) / λ
sin ( α ) < 0.25 λ / ( π r p ) .
v 1 / 2 = 2 π r 1 / 2 sin ( α ) / λ ,
u 1 / 2 = 8 π z 1 / 2 sin 2 ( α / 2 ) λ .
r p = ρ / ( l n V ) 1 / 2 ,
V = 2 π ρ NA fiber / λ ,
U p 2 NA collimator / NA fiber ,

Metrics