Abstract

We report a method for noninvasively evaluating blood flow at the ocular fundus by using laser speckle phenomena. The intensity fluctuation of speckles scattered from a 1-mm-diameter illuminated area at the fundus is detected and analyzed by the photon-correlation technique, which gives us the relative degree of total blood flows within the probe area. The method is used to evaluate blood flows at the ocular fundus of a rabbit and normal human volunteers. The experimental results show that the present laser speckle method is useful for the relative evaluation of blood flows in the ocular fundus tissue.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Hickam, R. Frayser, “A photographic method for measuring the mean retinal circulation time using fluorescein,” Invest. Ophthalmol. Vis. Sci. 4, 876–884 (1965).
  2. C. E. Riva, G. T. Feke, I. Ben-Sira, “Fluorescein dye dilution technique and retinal circulation,” Am. J. Physiol. 234, H315–H322 (1978).
    [PubMed]
  3. C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
    [PubMed]
  4. T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
    [CrossRef] [PubMed]
  5. G. T. Feke, C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
    [CrossRef] [PubMed]
  6. C. E. Riva, G. T. Feke, B. Eberli, V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt. 18, 2301–2306 (1979).
    [CrossRef] [PubMed]
  7. C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981).
    [CrossRef] [PubMed]
  8. B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988).
    [CrossRef] [PubMed]
  9. G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
    [PubMed]
  10. C. E. Riva, B. L. Petrig, R. D. Shonat, C. J. Pournaras, “Scattering process in LDV from retinal vessels,” Appl. Opt. 28, 1078–1083 (1989).
    [CrossRef] [PubMed]
  11. E. R. Pike, “Photon correlation velocimetry,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23 of NATO Advanced Study Institutes Series B: Physics (Plenum, New York, 1977), pp. 338–341.
  12. C. E. Riva, B. L. Petrig, “Retinal blood flow: laser Doppler velocimetry and blue field simulation technique,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 390–409, and references therein.
    [CrossRef]
  13. A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [CrossRef]
  14. A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).
  15. Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.
  16. J. D. Briers, “Wavelength dependence of intensity fluctuations in laser speckle patterns from biological specimens,” Opt. Commun. 13, 324–326 (1975).
    [CrossRef]
  17. A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
    [CrossRef]
  18. H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, T. Ohura, “Blood flow observed by time-varying laser speckle,” Opt. Lett. 10, 104–106 (1985).
    [CrossRef] [PubMed]
  19. H. Fujii, T. Asakura, T. Okamoto, “Optical fiber probe for blood flow monitoring,” in Optical Fibers in Medicine and Biology I, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.576, 76–82 (1985).
    [CrossRef]
  20. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, T. Ohura, “Evaluation of blood flow by laser speckle image sensing. Part 1,” Appl. Opt. 26, 5321–5325 (1987).
    [CrossRef] [PubMed]
  21. B. Ruth, “Superposition of two dynamic speckle patterns: an application to non-contact blood flow measurements,” J. Mod. Opt. 34, 257–273 (1987).
    [CrossRef]
  22. B. Ruth, “Non-contact blood flow determination using a laser speckle method,” Opt. Laser Technol. 20, 309–316 (1988).
    [CrossRef]
  23. T. Asakura, “Dynamic properties of bio-speckles and their application to blood flow measurements,” Anritsu News 8(38), 4–9 (1988).
  24. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 9–75.
    [CrossRef]
  25. T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981) and references therein.
    [CrossRef]
  26. T. Yoshimura, “Statistical properties of dynamic speckles,” J. Opt. Soc. Am. A 3, 1032–1054 (1986).
    [CrossRef]
  27. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980), Chap. 4, p. 70.
  28. T. Behrendt, L. A. Wilson, “Spectral reflectance photography of the retina,” Am. J. Ophthalmol. 59, 1079–1088 (1965).
    [PubMed]
  29. T. Behrendt, T. D. Duane, “Investigation of fundus oculi with spectral reflectance photography,” Arch. Ophthalmol. 75, 373–379 (1966).
    [CrossRef]
  30. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
    [CrossRef] [PubMed]
  31. N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
    [CrossRef] [PubMed]
  32. American National Standard for the Safe Use of Lasers, ANSI Z-136.1 (American National Standards Institute, New York, 1976).
  33. F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
    [CrossRef] [PubMed]

1989 (3)

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

C. E. Riva, B. L. Petrig, R. D. Shonat, C. J. Pournaras, “Scattering process in LDV from retinal vessels,” Appl. Opt. 28, 1078–1083 (1989).
[CrossRef] [PubMed]

A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[CrossRef]

1988 (3)

B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988).
[CrossRef] [PubMed]

B. Ruth, “Non-contact blood flow determination using a laser speckle method,” Opt. Laser Technol. 20, 309–316 (1988).
[CrossRef]

T. Asakura, “Dynamic properties of bio-speckles and their application to blood flow measurements,” Anritsu News 8(38), 4–9 (1988).

1987 (2)

H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, T. Ohura, “Evaluation of blood flow by laser speckle image sensing. Part 1,” Appl. Opt. 26, 5321–5325 (1987).
[CrossRef] [PubMed]

B. Ruth, “Superposition of two dynamic speckle patterns: an application to non-contact blood flow measurements,” J. Mod. Opt. 34, 257–273 (1987).
[CrossRef]

1986 (2)

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

T. Yoshimura, “Statistical properties of dynamic speckles,” J. Opt. Soc. Am. A 3, 1032–1054 (1986).
[CrossRef]

1985 (1)

1981 (3)

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981).
[CrossRef] [PubMed]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981) and references therein.
[CrossRef]

1980 (1)

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

1979 (2)

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

C. E. Riva, G. T. Feke, B. Eberli, V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt. 18, 2301–2306 (1979).
[CrossRef] [PubMed]

1978 (2)

G. T. Feke, C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
[CrossRef] [PubMed]

C. E. Riva, G. T. Feke, I. Ben-Sira, “Fluorescein dye dilution technique and retinal circulation,” Am. J. Physiol. 234, H315–H322 (1978).
[PubMed]

1977 (1)

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

1975 (1)

J. D. Briers, “Wavelength dependence of intensity fluctuations in laser speckle patterns from biological specimens,” Opt. Commun. 13, 324–326 (1975).
[CrossRef]

1974 (1)

T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[CrossRef] [PubMed]

1972 (1)

C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

1966 (1)

T. Behrendt, T. D. Duane, “Investigation of fundus oculi with spectral reflectance photography,” Arch. Ophthalmol. 75, 373–379 (1966).
[CrossRef]

1965 (2)

T. Behrendt, L. A. Wilson, “Spectral reflectance photography of the retina,” Am. J. Ophthalmol. 59, 1079–1088 (1965).
[PubMed]

J. B. Hickam, R. Frayser, “A photographic method for measuring the mean retinal circulation time using fluorescein,” Invest. Ophthalmol. Vis. Sci. 4, 876–884 (1965).

Aizu, Y.

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

Asakura, T.

T. Asakura, “Dynamic properties of bio-speckles and their application to blood flow measurements,” Anritsu News 8(38), 4–9 (1988).

H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, T. Ohura, “Blood flow observed by time-varying laser speckle,” Opt. Lett. 10, 104–106 (1985).
[CrossRef] [PubMed]

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981) and references therein.
[CrossRef]

H. Fujii, T. Asakura, T. Okamoto, “Optical fiber probe for blood flow monitoring,” in Optical Fibers in Medicine and Biology I, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.576, 76–82 (1985).
[CrossRef]

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

Behrendt, T.

T. Behrendt, T. D. Duane, “Investigation of fundus oculi with spectral reflectance photography,” Arch. Ophthalmol. 75, 373–379 (1966).
[CrossRef]

T. Behrendt, L. A. Wilson, “Spectral reflectance photography of the retina,” Am. J. Ophthalmol. 59, 1079–1088 (1965).
[PubMed]

Benary, V.

Benedek, G.

C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Ben-Sira, I.

C. E. Riva, G. T. Feke, I. Ben-Sira, “Fluorescein dye dilution technique and retinal circulation,” Am. J. Physiol. 234, H315–H322 (1978).
[PubMed]

T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[CrossRef] [PubMed]

Briers, J. D.

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

J. D. Briers, “Wavelength dependence of intensity fluctuations in laser speckle patterns from biological specimens,” Opt. Commun. 13, 324–326 (1975).
[CrossRef]

Delori, F. C.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Deupree, D. W.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980), Chap. 4, p. 70.

Duane, T. D.

T. Behrendt, T. D. Duane, “Investigation of fundus oculi with spectral reflectance photography,” Arch. Ophthalmol. 75, 373–379 (1966).
[CrossRef]

Ducrey, N. M.

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

Duvernoy, J.

A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[CrossRef]

Eberli, B.

Feke, G. T.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

C. E. Riva, G. T. Feke, B. Eberli, V. Benary, “Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,” Appl. Opt. 18, 2301–2306 (1979).
[CrossRef] [PubMed]

C. E. Riva, G. T. Feke, I. Ben-Sira, “Fluorescein dye dilution technique and retinal circulation,” Am. J. Physiol. 234, H315–H322 (1978).
[PubMed]

G. T. Feke, C. E. Riva, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Frayser, R.

J. B. Hickam, R. Frayser, “A photographic method for measuring the mean retinal circulation time using fluorescein,” Invest. Ophthalmol. Vis. Sci. 4, 876–884 (1965).

Fujii, H.

Goger, D. G.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 9–75.
[CrossRef]

Gragoudas, E. S.

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Grunwald, J. E.

Hickam, J. B.

J. B. Hickam, R. Frayser, “A photographic method for measuring the mean retinal circulation time using fluorescein,” Invest. Ophthalmol. Vis. Sci. 4, 876–884 (1965).

Ikawa, H.

Koyama, T.

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

Mainster, M. A.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Nohira, K.

O’Keefe, K.

Ogino, K.

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

Ohura, T.

Okamoto, T.

H. Fujii, T. Asakura, T. Okamoto, “Optical fiber probe for blood flow monitoring,” in Optical Fibers in Medicine and Biology I, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.576, 76–82 (1985).
[CrossRef]

Oulamara, A.

A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[CrossRef]

Parker, J. S.

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Petrig, B. L.

C. E. Riva, B. L. Petrig, R. D. Shonat, C. J. Pournaras, “Scattering process in LDV from retinal vessels,” Appl. Opt. 28, 1078–1083 (1989).
[CrossRef] [PubMed]

B. L. Petrig, C. E. Riva, “Retinal laser Doppler velocimetry: toward its computer-assisted clinical use,” Appl. Opt. 27, 1126–1134 (1988).
[CrossRef] [PubMed]

C. E. Riva, B. L. Petrig, “Retinal blood flow: laser Doppler velocimetry and blue field simulation technique,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 390–409, and references therein.
[CrossRef]

Peukert, M.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Pike, E. R.

E. R. Pike, “Photon correlation velocimetry,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23 of NATO Advanced Study Institutes Series B: Physics (Plenum, New York, 1977), pp. 338–341.

Pournaras, C. J.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Riva, C.

T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[CrossRef] [PubMed]

C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Riva, C. E.

Ross, B.

C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Roth, E.

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Ruth, B.

B. Ruth, “Non-contact blood flow determination using a laser speckle method,” Opt. Laser Technol. 20, 309–316 (1988).
[CrossRef]

B. Ruth, “Superposition of two dynamic speckle patterns: an application to non-contact blood flow measurements,” J. Mod. Opt. 34, 257–273 (1987).
[CrossRef]

Sebag, J.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

Shintomi, Y.

Shonat, R. D.

Sinclair, S. H.

Tagawa, H.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

Takai, N.

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981) and references therein.
[CrossRef]

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

Tanaka, T.

T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[CrossRef] [PubMed]

Tribillon, G.

A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[CrossRef]

Weiter, J. J.

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

Wilson, L. A.

T. Behrendt, L. A. Wilson, “Spectral reflectance photography of the retina,” Am. J. Ophthalmol. 59, 1079–1088 (1965).
[PubMed]

Yamamoto, Y.

Yoshimura, T.

Am. J. Ophthalmol. (1)

T. Behrendt, L. A. Wilson, “Spectral reflectance photography of the retina,” Am. J. Ophthalmol. 59, 1079–1088 (1965).
[PubMed]

Am. J. Physiol. (1)

C. E. Riva, G. T. Feke, I. Ben-Sira, “Fluorescein dye dilution technique and retinal circulation,” Am. J. Physiol. 234, H315–H322 (1978).
[PubMed]

Anritsu News (1)

T. Asakura, “Dynamic properties of bio-speckles and their application to blood flow measurements,” Anritsu News 8(38), 4–9 (1988).

Appl. Opt. (5)

Appl. Phys. (1)

T. Asakura, N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” Appl. Phys. 25, 179–194 (1981) and references therein.
[CrossRef]

Arch. Ophthalmol. (3)

T. Behrendt, T. D. Duane, “Investigation of fundus oculi with spectral reflectance photography,” Arch. Ophthalmol. 75, 373–379 (1966).
[CrossRef]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. (1)

C. Riva, B. Ross, G. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11, 936–944 (1972).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

J. B. Hickam, R. Frayser, “A photographic method for measuring the mean retinal circulation time using fluorescein,” Invest. Ophthalmol. Vis. Sci. 4, 876–884 (1965).

G. T. Feke, H. Tagawa, D. W. Deupree, D. G. Goger, J. Sebag, J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30, 58–65 (1989).
[PubMed]

J. Mod. Opt. (2)

B. Ruth, “Superposition of two dynamic speckle patterns: an application to non-contact blood flow measurements,” J. Mod. Opt. 34, 257–273 (1987).
[CrossRef]

A. Oulamara, G. Tribillon, J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

J. D. Briers, “Wavelength dependence of intensity fluctuations in laser speckle patterns from biological specimens,” Opt. Commun. 13, 324–326 (1975).
[CrossRef]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Opt. Eng. (1)

A. F. Fercher, M. Peukert, E. Roth, “Visualization and measurement of retinal blood flow by means of laser speckle photography,” Opt. Eng. 25, 731–735 (1986).

Opt. Laser Technol. (1)

B. Ruth, “Non-contact blood flow determination using a laser speckle method,” Opt. Laser Technol. 20, 309–316 (1988).
[CrossRef]

Opt. Lett. (1)

Science (1)

T. Tanaka, C. Riva, I. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186, 830–831 (1974).
[CrossRef] [PubMed]

Vis. Res. (1)

F. C. Delori, J. S. Parker, M. A. Mainster, “Light levels in fundus photography and fluorescein angiography,” Vis. Res. 20, 1099–1104 (1980).
[CrossRef] [PubMed]

Other (7)

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980), Chap. 4, p. 70.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1984), pp. 9–75.
[CrossRef]

American National Standard for the Safe Use of Lasers, ANSI Z-136.1 (American National Standards Institute, New York, 1976).

H. Fujii, T. Asakura, T. Okamoto, “Optical fiber probe for blood flow monitoring,” in Optical Fibers in Medicine and Biology I, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.576, 76–82 (1985).
[CrossRef]

Y. Aizu, K. Ogino, T. Koyama, N. Takai, T. Asakura, “Evaluation of retinal blood flow using time-varying laser speckle,” in Laser Anemometry in Fluid Mechanics—III, R. J. Adrian, ed. (Ladoan, Lisbon, 1988), pp. 55–68.

E. R. Pike, “Photon correlation velocimetry,” in Photon Correlation Spectroscopy and Velocimetry, H. Z. Cummins, E. R. Pike, eds., Vol. 23 of NATO Advanced Study Institutes Series B: Physics (Plenum, New York, 1977), pp. 338–341.

C. E. Riva, B. L. Petrig, “Retinal blood flow: laser Doppler velocimetry and blue field simulation technique,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 390–409, and references therein.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Principle of evaluating the blood flow of the ocular fundus by using laser speckles, (b) principle of the laser Doppler method, (c) schematic illustration of the speckle pattern formation, and (d) the random walk in the complex plane.

Fig. 2
Fig. 2

(a) Schematic diagram and (b) the apparatus for evaluating the blood flow of the ocular fundus.

Fig. 3
Fig. 3

(a) Setup of the glass capillary for the preliminary experiment, (b) typical correlation functions, (c) the linearity between the blood-flow velocity and the value of 1/τc.

Fig. 4
Fig. 4

Fundus photograph of the rabbit eye that we tested.

Fig. 5
Fig. 5

Typical photon-correlation functions of the speckle intensity fluctuation obtained from the three different probe positions (a), (b), and (c) as indicated in Fig. 4.

Fig. 6
Fig. 6

Temporal variations of the reciprocal of time-correlation length 1/τc obtained from the three probe positions [i], [ii], and [iii] as shown in Fig. 4 when noradrenaline was injected into the rabbit. N indicates the time of the injection.

Fig. 7
Fig. 7

Photon-correlation functions obtained from position [ii] of Fig. 4 at three different times, α, β, and γ, as indicated in Fig. 6.

Fig. 8
Fig. 8

Fundus photograph of a human right eye illuminated by the red-free light and the laser light of a 1-mm-diameter spot.

Fig. 9
Fig. 9

Typical photon-correlation functions obtained from two probe positions (a) and (b) shown in Fig. 8.

Fig. 10
Fig. 10

Histograms of the time-correlation length τc obtained from various probe positions at the fundus of the right and left eyes of the volunteers. The experimental data are divided into two histograms according to the probe areas in which (a) a visible vessel exists or (b) no visible vessel exists.

Fig. 11
Fig. 11

Distribution maps of the time-correlation length τc obtained from various probe positions at each ocular fundus of three normal volunteers, (a), (b), and (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f D = 1 2 π ( K s - K i ) V ,
A j ( P , t ) = A j ( P , t ) exp [ i ϕ j ( P , t ) ] ,
A ( P , t ) = j = 1 N A j ( P , t ) exp [ i ϕ j ( P , t ) ] ,
A ( O , t ) - j = 1 N A j ( O , t ) exp [ i ϕ j ( O , t ) ] ,

Metrics