Abstract

A self-compensation method for measuring the birefringence of an optical material is proposed; an accuracy of ~10−6 is obtained. Only a thin sample is needed in this method.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Heller, O. Kafri, J. Krasinski, “Direct birefringence measurements using moiré ray deflection techniques,” Appl. Opt. 24, 3037–3040 (1985).
    [CrossRef] [PubMed]
  2. F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt Rinehart & Winston, New York, 1961).
  3. L. M. Bernardo, O. D. D. Soares, “Birefringence measurements by double speckle photography,” Appl. Opt. 26, 769–772 (1987).
    [CrossRef]
  4. Li Yi, Chuanzeng Pan, Guohua Li, “Refractive index measurement using a standard compensating method,” Appl. Opt. 29, 4546–4547 (1990).
    [CrossRef]

1990

1987

1985

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Optical schematic representation of the measurement. L, light source (He–Ne laser); P1, P2, polarizers; S, slit; D, detector.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( N e - N o ) = K λ / E L ,
σ n / n = [ ( σ K / K ) 2 + ( σ L / L ) 2 + ( σ E / E ) 2 ] 1 / 2 .
K ¯ = 15.00 ,             σ K = 0.01 , L ¯ = 23.953 mm ,             σ L = 0.01 mm , E ¯ = 4.396 × 10 - 2 rad ,             σ E = 2.315 × 10 - 6 rad .
( N e - N o ) = 9.070 × 10 - 3 , σ n / n = 6.6 × 10 - 4 ,             σ n = 6.6 × 10 - 6 .
n = ( N e - N o ) = 0.009070 ± 7 × 10 - 6

Metrics