Abstract

Two earlier computations of the optimal truncation of Gaussian beams for a simple, focused, coherent lidar that used an incoherent backscatter target with identical circular transmitter and receiver apertures differ because they refer to different receiver geometries. The definitions of heterodyne and system-antenna efficiencies are reviewed in light of the discrepancy and are used to compare the optical performance of systems with apertures illuminated by beam profiles that are not Gaussian. The heterodyne efficiency is less than 0.5 for all cases considered here.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Antenna parameters for incoherent backscatter heterodyne lidar

B. J. Rye
Appl. Opt. 18(9) 1390-1398 (1979)

Coherent laser radar performance for general atmospheric refractive turbulence

Rod G. Frehlich and Michael J. Kavaya
Appl. Opt. 30(36) 5325-5352 (1991)

Spatial weighting in laboratory incoherent light scattering experiments

J. F. Kusters, Barry J. Rye, and Andrew C. Walker
Appl. Opt. 28(4) 657-664 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription