Abstract

Rayleigh–Brillouin spectra for heated nitrogen gas were measured by imaging the output of a Fabry–Perot interferometer onto a CCD array. The spectra were compared with the theoretical 6-moment model of Rayleigh–Brillouin scattering convolved with the Fabry–Perot instrument function. Estimates of the temperature and a dimensionless parameter proportional to the number density of the gas as functions of position in the laser beam were calculated by least-squares deviation fits between theory and experiment.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965).
    [CrossRef]
  2. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
    [CrossRef] [PubMed]
  3. A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
    [CrossRef]
  4. M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).
  5. S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).
  6. S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966).
    [CrossRef]
  7. A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
    [CrossRef]
  8. A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
    [CrossRef]
  9. A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
    [CrossRef]
  10. C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
    [CrossRef]
  11. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  12. M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975).
    [CrossRef]
  13. T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
    [CrossRef]
  14. E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
    [CrossRef]
  15. N. A. Clark, “Inelastic light scattering from density fluctuations in dilute gases. The kinetic–hydrodynamic transition in a monatomic gas,” Phys. Rev. A 12, 232–244 (1975).
    [CrossRef]
  16. R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
    [CrossRef]
  17. Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
    [CrossRef]
  18. J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
    [CrossRef]
  19. V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
    [CrossRef]
  20. A. T. Young, G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
    [CrossRef] [PubMed]
  21. C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985).
    [CrossRef] [PubMed]
  22. R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.
  23. R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
    [CrossRef]
  24. R. L. Schwiesow, L. Lading, “Temperature profiling by Rayleigh-scattering lidar,” Appl. Opt. 20, 1972–1979 (1981).
    [CrossRef] [PubMed]
  25. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  26. H. Shimizu, K. Noguchi, C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986).
    [CrossRef] [PubMed]
  27. F. J. Lehmann, S. A. Lee, C. Y. She, “Laboratory measurements of atmospheric temperature and backscatter ratio using a high-spectral-resolution lidar technique,” Opt. Lett. 11, 563–565 (1986).
    [CrossRef] [PubMed]
  28. G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry–Perot interferometer imaging system for thermospheric temperature and wind measurements,” Appl. Opt. 19, 2206–2209 (1980).
    [CrossRef] [PubMed]
  29. D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
    [CrossRef]
  30. V. J. Abreu, W. R. Skinner, “Inversion of Fabry–Perot CCD images: use in Doppler shift measurements,” Appl. Opt. 28, 3382–3386 (1989).
    [CrossRef] [PubMed]
  31. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 323–333.
  32. J. M. Vaughn, The Fabry–Perot Interferometer (Hilger, London, 1989), Chap. 3.
  33. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1986), Chap. 2.5.1.
  34. Reference 32, Section 3.7.
  35. R. C. Weast, ed., Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, Ohio, 1969), p. F-43.
  36. Ref. 32, p.E-2.
  37. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 8.
  38. J. R. Wolberg, Prediction Analysis (Van Nostrand, Princeton, N.J., 1967), Chap. 8.

1989

1986

1985

C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985).
[CrossRef] [PubMed]

1984

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

1983

1982

A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
[CrossRef]

1981

1980

G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry–Perot interferometer imaging system for thermospheric temperature and wind measurements,” Appl. Opt. 19, 2206–2209 (1980).
[CrossRef] [PubMed]

V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

1976

R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
[CrossRef]

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

1975

N. A. Clark, “Inelastic light scattering from density fluctuations in dilute gases. The kinetic–hydrodynamic transition in a monatomic gas,” Phys. Rev. A 12, 232–244 (1975).
[CrossRef]

M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975).
[CrossRef]

1974

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1972

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

1971

E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

1968

A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
[CrossRef]

A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
[CrossRef]

1967

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

1966

S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966).
[CrossRef]

T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

1965

G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965).
[CrossRef]

1964

M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).

S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Abreu, V. J.

Armstrong, R. L.

R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Benedek, G.

G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965).
[CrossRef]

Benedek, G. B.

T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 323–333.

Cattolica, R.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.

Charleton, P. J.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Chu, B.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Clark, N. A.

N. A. Clark, “Inelastic light scattering from density fluctuations in dilute gases. The kinetic–hydrodynamic transition in a monatomic gas,” Phys. Rev. A 12, 232–244 (1975).
[CrossRef]

Cohen, H. D.

J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
[CrossRef]

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 8.

Fookson, J. E.

J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
[CrossRef]

Ghaem-Maghami, V.

V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

Ghatak, A.

M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).

Gordon, R.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Gornall, W. S.

J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
[CrossRef]

Greenway, A. H.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Greytak, T.

G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965).
[CrossRef]

Greytak, T. J.

T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Hallinan, T. J.

Hara, E. H.

E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1986), Chap. 2.5.1.

Herring, G. C.

C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985).
[CrossRef] [PubMed]

Hubert, M.

M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975).
[CrossRef]

Kattawar, G. W.

Knapp, H. F. P.

E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Lading, L.

Lao, Q. H.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Lee, S. A.

Lehmann, F. J.

May, A. D.

V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975).
[CrossRef]

E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

McWhirter, I.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Moosmüller, H.

C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985).
[CrossRef] [PubMed]

Nelkin, M.

M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).

S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Noguchi, K.

Pitz, R. W.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

Ranganathan, S.

S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966).
[CrossRef]

Rees, D.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Robben, F.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.

Sandoval, R. P.

R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Schoen, P. E.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Schwiesow, R. L.

She, C. Y.

Shimizu, H.

Sirovich, L.

A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
[CrossRef]

A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
[CrossRef]

Sivjee, G. G.

Skinner, W. R.

Steen, Å.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Sugawara, A.

A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
[CrossRef]

A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
[CrossRef]

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

Swenson, G. R.

Talbot, L.

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

Vaughn, J. M.

J. M. Vaughn, The Fabry–Perot Interferometer (Hilger, London, 1989), Chap. 3.

Wolberg, J. R.

J. R. Wolberg, Prediction Analysis (Van Nostrand, Princeton, N.J., 1967), Chap. 8.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 323–333.

Yip, S.

A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
[CrossRef]

A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
[CrossRef]

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966).
[CrossRef]

S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Young, A. T.

Appl. Opt.

Can. J. Phys.

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972).
[CrossRef]

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975).
[CrossRef]

E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Combust. Flame

R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976).
[CrossRef]

J. Chem. Phys.

Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976).
[CrossRef]

Opt. Lett.

Phys. Fluids

S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966).
[CrossRef]

A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968).
[CrossRef]

A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

Phys. Rev.

A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968).
[CrossRef]

Phys. Rev. A

M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).

S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

N. A. Clark, “Inelastic light scattering from density fluctuations in dilute gases. The kinetic–hydrodynamic transition in a monatomic gas,” Phys. Rev. A 12, 232–244 (1975).
[CrossRef]

R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Phys. Today

A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
[CrossRef]

Planet. Space Sci.

D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984).
[CrossRef]

Proc. IEEE

G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965).
[CrossRef]

Other

R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 323–333.

J. M. Vaughn, The Fabry–Perot Interferometer (Hilger, London, 1989), Chap. 3.

G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1986), Chap. 2.5.1.

Reference 32, Section 3.7.

R. C. Weast, ed., Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, Ohio, 1969), p. F-43.

Ref. 32, p.E-2.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 8.

J. R. Wolberg, Prediction Analysis (Van Nostrand, Princeton, N.J., 1967), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fabry–Perot interferometer used in the imaging mode. L L ¯ is the laser beam, F is the interferometer whose etalon plate spacing is d, and V V ¯ is the CCD array. The scattering volume dVi is imaged onto the pixel of area dA0 located at the coordinate r 0 on the array.

Fig. 2
Fig. 2

Experimental arrangement for Rayleigh–Brillouin scattering using the Fabry–Perot interferometer in the imaging mode.

Fig. 3
Fig. 3

Flow-field geometry inside the scattering chamber. The two thermocouples are at location T.

Fig. 4
Fig. 4

Typical spectra for (a) the Fabry–Perot interferometer instrument function, (b) Rayleigh–Brillouin scattering from room-temperature nitrogen gas, and (c) Rayleigh–Brillouin scattering from the elevated temperature flow field.

Fig. 5
Fig. 5

Gas temperature from the least squares deviation fit as a function of pixel position. The T symbols are the readings of the two thermocouples of Fig. 3.

Fig. 6
Fig. 6

Density parameter y from the least-squares deviation fit as a function of pixel position.

Fig. 7
Fig. 7

Ratio of the density parameter y from Fig. 6 to the density parameter obtained from the temperature of Fig. 5, the ideal gas law, and constant pressure.

Fig. 8
Fig. 8

Gas temperature as a function of pixel position for the repositioned heated N2 gas jet obtained by measurement of the absolute intensity of the scattered light. The T symbols are the readings of the two thermocouples of Fig. 3.

Tables (1)

Tables Icon

Table I Predicted Uncertainty in Temperature Measurement of Nitrogen at STP by Using 1/384 of the Height of the Region Illuminated with a 1-J Laser pulse

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

x = Δ ω κ ( m 2 k T ) 1 / 2 ,
y = N κ η ( m k T 2 ) 1 / 2 ,
Δ ω = ω scattered - ω 0 ;
κ = 4 π λ 0 sin α 2 ,
tan θ = r i / f 1 .
r 0 = M r i ,
M = - f 2 f 1 .
R ( r 0 ) = I laser ( r i ) [ d σ d Ω ( α ) ] N ( r i ) ( Δ Ω i ) t ( d A 0 ) M 2 ω 0 × - d x S ( x , y ) T ( ω , r 0 f 2 ) ,
R ( r 0 ) = K - d x S ( x , y ) T ( ω , r 0 f 2 ) .
T ( ω , θ ) = [ 1 + sin 2 ( ω d cos θ c ) sin 2 ( π 2 T ) ] - 1 ,
cos θ 1 - r 0 2 2 f 2 2 .
T ( ω 0 + Δ ω , r 0 f 2 ) = [ 1 + sin 2 ( ω 0 d R 0 u f 2 2 c - d Δ ω c ) sin 2 ( ω 0 d R 0 δ f 2 2 c ) ] - 1 .
R ( ξ ) K - d x S ( x , y ) 1 + sin 2 [ w ( ξ - x ) ] sin 2 ( w β δ ) ,
β = ω 0 R 0 κ f 2 2 ( m 2 k T ) 1 / 2 ,
w = κ d c ( 2 k T m ) 1 / 2 ,
ξ = β u .
η ( T ) = 170.7 ( T / 283.9 ) 0.739             μ P ,
Λ ( T ) = 58.27 ( T / 277.4 ) 0.884             μ cal / cm s K ,
P = E p N ( d σ d Ω ) N ( Δ Ω ) L x λ 0 h c ,
d r 0 d ω = λ f 2 2 π c θ .
Δ ρ = λ Δ ω 2 π c θ ϕ x .
I i = a 1 exp [ - ( ρ i - a 3 ) / a 2 ] 2 ,
σ a 2 a 2 = ψ 2 ( n p a 1 ) 1 / 2 ,
σ T T = 2 σ a 2 a 2 .
Δ ρ FWHM = 2 a 2 ( ln 2 ) 1 / 2 .
a 1 = ( ln 2 π ) 1 / 2 4 π B P Δ ω FWHM ,
Δ ρ 3 FWHM = λ 0 3 Δ ω FWHM 2 π c θ ϕ x .
σ T T = 2 ψ 2 ( π ln 2 ) 1 / 4 ( c θ ϕ x 6 λ 0 B P ) 1 / 2 .

Metrics