Abstract

A method for noise reduction in double-exposure speckle interferometry is proposed, based on averaging independent spatially filtered correlation fringe patterns.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E. 3, 214–218 (1970).
    [CrossRef]
  2. E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
    [CrossRef]
  3. V. A. Deason, J. S. Epstein, M. Abdallah, “Interfacial shear phenomena in graphite epoxy composites under impact loading using dynamic moiré interferometry,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 493–499 (1987).

1970 (2)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E. 3, 214–218 (1970).
[CrossRef]

E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
[CrossRef]

Abdallah, M.

V. A. Deason, J. S. Epstein, M. Abdallah, “Interfacial shear phenomena in graphite epoxy composites under impact loading using dynamic moiré interferometry,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 493–499 (1987).

Archbold, E.

E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
[CrossRef]

Burch, J. M.

E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
[CrossRef]

Deason, V. A.

V. A. Deason, J. S. Epstein, M. Abdallah, “Interfacial shear phenomena in graphite epoxy composites under impact loading using dynamic moiré interferometry,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 493–499 (1987).

Ennos, A. E.

E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
[CrossRef]

Epstein, J. S.

V. A. Deason, J. S. Epstein, M. Abdallah, “Interfacial shear phenomena in graphite epoxy composites under impact loading using dynamic moiré interferometry,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 493–499 (1987).

Leendertz, J. A.

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E. 3, 214–218 (1970).
[CrossRef]

J. Phys. E. (1)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E. 3, 214–218 (1970).
[CrossRef]

Opt. Acta (1)

E. Archbold, J. M. Burch, A. E. Ennos, “Recording of in-plane surface displacement by double-exposure speckle photography,” Opt. Acta 17, 883–898 (1970).
[CrossRef]

Other (1)

V. A. Deason, J. S. Epstein, M. Abdallah, “Interfacial shear phenomena in graphite epoxy composites under impact loading using dynamic moiré interferometry,” in Photomechanics and Speckle Metrology, F. Chiang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.814, 493–499 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spatial filtering arrangement for averaging speckle correlation fringe patterns. Correlated and uncorrelated speckle patterns on negative N have diffraction halo profiles Hc and Hu, respectively. Lens L2 (which acts as thefilteringaperture) and the CCD camera are moved on an XY stage driven by stepper motors.

Fig. 2
Fig. 2

Dark-field speckle correlation fringe pattern showing a vertical stress wave traveling from right to left over a vertical crack. Fringes represent contours of constant in-plane displacement in the horizontal direction (sensitivity = 0.40μm fringe−1). Field of view, 73 mm × 49 mm.

Fig. 3
Fig. 3

Noise level in digitized correlation fringe patterns. Standard deviation s is plotted as a function of mean intensity 〈I〉 for dark-field and bright-field patterns (single images and averages of four images). Units are arbitrary (full scale, 0–255).

Fig. 4
Fig. 4

Averaged correlation fringe pattern calculated from 18 dark-field and 18 bright-field images. Other details are as for Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I i ( m , n ) = a i [ I i ( m , n ) + b i ] ,             ( i = 1 , 2 ) .
I 3 ( m , n ) = Σ W i ( m , n ) I i ( m , n ) / Σ W i ( m , n ) ,
W i ( m , n ) = 1 / σ i 2 ( m , n ) .
σ i 2 ( m , n ) = a i 2 { s [ I i ( m , n ) ] } 2 / p i ,
I 1 ( m , n ) = [ 1 + cos ϕ ( m , n ) ] / 2 ,
I 2 ( m , n ) = [ 3 - cos ϕ ( m , n ) ] / 2 ,
s [ I i ( m , n ) ] = σ 0 I i ( m , n ) ,

Metrics