Abstract

We employed the rigorous vector coupled-wave theory [ J. Opt. Soc. Am. 73, 1105 ( 1983)] to analyze the electromagnetic scattering from two dimensional (2-D) surface-relief dielectric gratings. A shoot-back method was developed for the numerical solution of the resulting coupled differential equations. This method allowed numerical solutions to be found for grating structures of arbitrary profiles and relatively deep grooves. It was most suitable where the grating medium refractive index was not too large and where only a small number of propagating orders existed. Experiments confirmed the numerically predicted reflectivities for 2-D surface-relief dielectric sinusoidal gratings. Reflectivity measurements were made on 2-D sinusoidal gratings fabricated on photoresist and on polycarbonate. The grating periodicities were of the order of 3000 lines/mm such that only the zero-order diffracted waves were propagating in the incident region, and possibly a few forward orders in the transmission region. The embossing technique that was used for replicating the grating patterns from photoresist onto polycarbonate proved to be a feasible method for the production of such gratings.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric surface-relief gratings with high diffraction efficiency

Kiyoshi Yokomori
Appl. Opt. 23(14) 2303-2310 (1984)

Three-dimensional diffraction analysis of dielectric surface-relief gratings

Masahiro Abe and Masanori Koshiba
J. Opt. Soc. Am. A 11(7) 2038-2044 (1994)

Diffraction analysis of dielectric surface-relief gratings

M. G. Moharam and T. K. Gaylord
J. Opt. Soc. Am. 72(10) 1385-1392 (1982)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription