Abstract

Hybrid refractive–diffractive elements offer a similar level of aberration control to the conventional doublet with approximately half the volume of material. The design principles of infrared elements are discussed. It is shown that, in order to match the performance of the conventional doublet, a general meniscus hybrid with an aspheric surface is required. The potential advantages are illustrated to good effect by a series of design examples, including a Petzval objective for the 3–5-μm band.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef] [PubMed]
  2. G. S. Swanson, W. B. Veldkamp, “Infrared applications of diffractive optical elements,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 155–162 (1988).
  3. P. P. Clark, C. Londono, “Production of kinoforms by single point diamond turning,” Opt. Photon. News 15(12), 39–40 (1989).
  4. D. A. Buralli, G. M. Morris, J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976–983 (1989).
    [CrossRef] [PubMed]
  5. M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
    [CrossRef]
  6. R. Kingslake, Lens Design Fundamentals (Academic, London, 1978), Chap. 4, p. 81.
  7. W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, England, 1986), Chap. 12, pp. 228–232.
  8. W. C. Sweatt, “Describing holographic optical elements as lenses,” J. Opt. Soc. Am. 67, 803–808 (1977).
    [CrossRef]
  9. D. A. Buralli, G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).
    [CrossRef] [PubMed]
  10. code v is a Trademark of Optical Research Associates, 550 N. Rosemead Blvd., Pasadena, Calif. 91107.

1989

1988

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
[CrossRef] [PubMed]

1977

Buralli, D. A.

Clark, P. P.

P. P. Clark, C. Londono, “Production of kinoforms by single point diamond turning,” Opt. Photon. News 15(12), 39–40 (1989).

George, N.

Hutley, M. C.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, London, 1978), Chap. 4, p. 81.

Londono, C.

P. P. Clark, C. Londono, “Production of kinoforms by single point diamond turning,” Opt. Photon. News 15(12), 39–40 (1989).

Morris, G. M.

Rogers, J. R.

Stevens, R. F.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

Stone, T.

Swanson, G. S.

G. S. Swanson, W. B. Veldkamp, “Infrared applications of diffractive optical elements,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 155–162 (1988).

Sweatt, W. C.

Veldkamp, W. B.

G. S. Swanson, W. B. Veldkamp, “Infrared applications of diffractive optical elements,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 155–162 (1988).

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, England, 1986), Chap. 12, pp. 228–232.

Wilson, S. J.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988).
[CrossRef]

J. Opt. Soc. Am.

Opt. Photon. News

P. P. Clark, C. Londono, “Production of kinoforms by single point diamond turning,” Opt. Photon. News 15(12), 39–40 (1989).

Other

code v is a Trademark of Optical Research Associates, 550 N. Rosemead Blvd., Pasadena, Calif. 91107.

R. Kingslake, Lens Design Fundamentals (Academic, London, 1978), Chap. 4, p. 81.

W. T. Welford, Aberrations of Optical Systems (Hilger, Bristol, England, 1986), Chap. 12, pp. 228–232.

G. S. Swanson, W. B. Veldkamp, “Infrared applications of diffractive optical elements,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 155–162 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DOE conjugate parameters.

Fig. 2
Fig. 2

Conventional doublet.

Fig. 3
Fig. 3

Zinc sulfide hybrid (phase term correction).

Fig. 4
Fig. 4

Zinc sulfide hybrid (aspheric surface).

Fig. 5
Fig. 5

Plano–convex silicon hybrid (aspheric surface).

Fig. 6
Fig. 6

Conventional Petzval objective.

Fig. 7
Fig. 7

Hybrid Petzval objective.

Tables (1)

Tables Icon

Table I Achromatic Infrared Hybrids and Conventional Doublets

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

K R = V R ( V R - V D ) K ,             K D = V D ( V D - V R ) K ,
V R = ( n M - 1 ) / ( n S - n L ) ,             V D = λ M / ( λ S - λ L ) ,
Δ l S M = - f ( P R - P D ) ( V R - V D )
P R = ( n S - n M ) / ( n S - n L ) ,             P D = ( λ S - λ M ) / ( λ S - λ L ) .
S I = h 4 K D 4 [ 3 K D 2 ( C D 2 - C D 2 ) - 8 c 0 K D ( C D - C D ) ] ,
S II = - h 2 K D 2 H 2 ( c 0 K D + C D ) ,
S III = H 2 K D ,
S IV = 0 ,
S V = 0 ,
Σ S II = h 2 H [ K 2 - K R 2 n ( n - 1 ) ] ,
c 2 = c 0 = ( n 2 - n - 1 ) K R 2 - n ( n - 1 ) C D K D 2 n ( n - 1 ) K D + ( n 2 - 1 ) K R ,             c 1 = c 2 + K R ( n - 1 ) ,
W poly ( r ) = b 4 r 4 + b 6 r 6 + b 8 r 8 + ,
δ η ( λ ) = 2 F h 4 ( λ M - λ ) λ M ( 4 b 4 + 6 b 6 h 2 + 8 b 8 h 4 + ) ,

Metrics