Abstract

High-speed waveguide InGaAs/InAlAs multiple quantum well (MQW) optical intensity modulators are demonstrated. To minimize the modulator capacitance, an undoped InAlAs cladding layer is added over the MQW core layer in the optical waveguide. In addition, polyimide is spin coated under the bonding pad. As a result, a very wide bandwidth in excess of 40 GHz is developed with a driving voltage of 6 V for a 10-dB extinction ratio and a linewidth broadening factor a of < 1.0 at an operating wavelength of 1.54 μm. The frequency response of the modulator is limited by the device capacitance and inductance.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-voltage quantum well microring-enhanced Mach-Zehnder modulator

Hiroki Kaneshige, Rajdeep Gautam, Yuta Ueyama, Redouane Katouf, Taro Arakawa, and Yasuo Kokubun
Opt. Express 21(14) 16888-16900 (2013)

23 GHz Ge/SiGe multiple quantum well electro-absorption modulator

Papichaya Chaisakul, Delphine Marris-Morini, Mohamed-Saïd Rouifed, Giovanni Isella, Daniel Chrastina, Jacopo Frigerio, Xavier Le Roux, Samson Edmond, Jean-René Coudevylle, and Laurent Vivien
Opt. Express 20(3) 3219-3224 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription