Abstract

Recent advances in an aerosol-generation technique have permitted the accurate identification of optical resonance-mode features of micrometer-sized freely falling droplets for several different optical processes. Both input and output resonant features of fluorescence and lasing from dye-doped microdroplets were assigned to specific spherical cavity modes by using two independent procedures: (1) by matching observed fixed-angle elastic laser light scattering as a function of droplet size to calculated scattering intensities from the Lorenz–Mie theory, and (2) by matching observed resonance peaks to computed cavity-mode positions by automated correlation. Agreement between these two complementary techniques establishes high confidence in the resulting mode identifications. Assignments of observed emission peaks provide insight into droplet-emission mechanisms.

© 1992 Optical Society of America

Full Article  |  PDF Article

Corrections

J. D. Eversole, H.-B. Lin, and A. J. Campillo, "Cavity-mode identification of fluorescence and lasing in dye-doped microdroplets: errata," Appl. Opt. 31, 4925-4926 (1992)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-31-24-4925

References

  • View by:
  • |
  • |
  • |

  1. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [Crossref]
  2. J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
    [Crossref]
  3. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [Crossref] [PubMed]
  4. S. C. Hill, C. K. Rushforth, R. E. Benner, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
    [Crossref] [PubMed]
  5. P. R. Conwell, C. K. Rushforth, R. E. Benner, S. C. Hill, “Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum,” J. Opt. Soc. Am. A 1, 1181–1187 (1984).
    [Crossref]
  6. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–276 (1984).
    [Crossref] [PubMed]
  7. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref] [PubMed]
  8. H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
    [Crossref] [PubMed]
  9. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
    [Crossref] [PubMed]
  10. R. Fuchs, K. L. Kliewer, “Optical modes of vibration in an ion crystal sphere,” J. Opt. Soc. Am. 58, 319–330 (1968).
    [Crossref]
  11. P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [Crossref]
  12. G. J. Rosasco, H. S. Bennett, “Internal field resonance structure: implications for optical absorption and scattering by microscopic particles,” J. Opt. Soc. Am. 68, 1242–1250 (1978).
    [Crossref]
  13. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
    [Crossref] [PubMed]
  14. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [Crossref]
  15. V. Khare, H. M. Nussenzweig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
    [Crossref]
  16. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  17. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  18. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  20. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
    [Crossref]
  21. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [Crossref] [PubMed]
  22. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [Crossref]
  23. H. M. Lai, P. T. Leung, K. L. Poon, K. Young, “Characterization of the internal energy density of Mie scattering,” J. Opt. Soc. Am. A 8, 1553–1558 (1991).
    [Crossref]
  24. P. Chýlek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [Crossref]
  25. R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
    [Crossref]
  26. H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–23 (1990).
    [Crossref]
  27. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double resonance stimulated Raman scattering in micrometer sized droplets,” J. Opt. Soc. Am. B 7, 2079–2089 (1990).
    [Crossref]
  28. J. D. Eversole, H.-B. Lin, A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A 7, 2159–2168 (1990).
    [Crossref]
  29. J. Timmermans, The Physico-Chemical Constants of Binary Systems in Concentrated Solutions (Interscience, New York, 1960), Vol. 4, pp. 197–201, and references therein.
  30. V. P. Frontasev, L. S. Shraiber, “Refractometric studies of some organic liquids,” Uch. Zap. Sara. Gos. Univ. 69, 225 (1960).
  31. A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
    [Crossref] [PubMed]
  32. H.-B. Lin, J. D. Eversole, A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
    [Crossref]

1992 (1)

1991 (2)

H. M. Lai, P. T. Leung, K. L. Poon, K. Young, “Characterization of the internal energy density of Mie scattering,” J. Opt. Soc. Am. A 8, 1553–1558 (1991).
[Crossref]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref] [PubMed]

1990 (4)

1988 (2)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

1987 (1)

1986 (1)

1985 (1)

1984 (5)

1982 (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

1978 (2)

1977 (1)

V. Khare, H. M. Nussenzweig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[Crossref]

1976 (2)

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
[Crossref]

1973 (1)

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

1968 (1)

1960 (1)

V. P. Frontasev, L. S. Shraiber, “Refractometric studies of some organic liquids,” Uch. Zap. Sara. Gos. Univ. 69, 225 (1960).

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Baer, T.

Barber, P. W.

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
[Crossref]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Benner, R. E.

Bennett, H. S.

Berglund, R. N.

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Campillo, A. J.

Chang, R. K.

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–276 (1984).
[Crossref] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[Crossref] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Chýlek, P.

Conwell, P. R.

Eversole, J. D.

Frontasev, V. P.

V. P. Frontasev, L. S. Shraiber, “Refractometric studies of some organic liquids,” Uch. Zap. Sara. Gos. Univ. 69, 225 (1960).

Fuchs, R.

Hill, S. C.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Huston, A. L.

Justus, B. J.

Kerker, M.

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).

Khare, V.

V. Khare, H. M. Nussenzweig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[Crossref]

Kiehl, J. T.

Kliewer, K. L.

Ko, M. K. W.

Lai, H. M.

Leung, P. T.

Lin, H.-B.

Long, M. B.

Lui, B. Y. H.

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

McNulty, P. J.

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

Nussenzweig, H. M.

V. Khare, H. M. Nussenzweig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[Crossref]

Owen, J. F.

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Poon, K. L.

Rosasco, G. J.

Rushforth, C. K.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

Shraiber, L. S.

V. P. Frontasev, L. S. Shraiber, “Refractometric studies of some organic liquids,” Uch. Zap. Sara. Gos. Univ. 69, 225 (1960).

Timmermans, J.

J. Timmermans, The Physico-Chemical Constants of Binary Systems in Concentrated Solutions (Interscience, New York, 1960), Vol. 4, pp. 197–201, and references therein.

Tzeng, H.-M.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wall, K. F.

Young, K.

Aerosol Sci. Technol. (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Appl. Opt. (3)

Environ. Sci. Technol. (1)

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Phys. Rev. A (2)

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
[Crossref]

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

V. Khare, H. M. Nussenzweig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[Crossref]

A. J. Campillo, J. D. Eversole, H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Rev. Sci. Instrum. (1)

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–23 (1990).
[Crossref]

Uch. Zap. Sara. Gos. Univ. (1)

V. P. Frontasev, L. S. Shraiber, “Refractometric studies of some organic liquids,” Uch. Zap. Sara. Gos. Univ. 69, 225 (1960).

Other (5)

J. Timmermans, The Physico-Chemical Constants of Binary Systems in Concentrated Solutions (Interscience, New York, 1960), Vol. 4, pp. 197–201, and references therein.

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Three typical emission spectra from ≈ 14-μm-diameter R6G–ethanol droplets pumped by a cw Ar+ laser at 514.5 nm. The laser pump intensity is increased by ≈ 1.5× for each spectrum from bottom to top.

Fig. 2
Fig. 2

Elastic-scattering size spectra are plotted as a function of the vibrating-orifice frequency from 500 to 300 kHz. Spectrum (a) is experimental data obtained with 514.5-nm light at a scattering angle near 90°. Spectrum (b) was calculated from Lorenz–Mie theory for θ = 92.35° and m = 1.364.

Fig. 3
Fig. 3

Plots of the functional relation of droplet radius on the VOAG frequency for different values of C are drawn showing that for a given range of frequency (e.g., 200–150 kHz) both the magnitude and the span of droplet radii are affected. An estimate of C can be made initially by selecting a value that provides a span that is consistent with the data (see text).

Fig. 4
Fig. 4

(a) R6G–ethanol droplet-emission spectra and computed cavity-mode positions for the low wave-number half of the total R6G emission region. Two experimental spectra shown in the upper part of the figure were taken under identical conditions except that the excitation intensity was changed by ≈ 1.5×. Calculated cavity-mode positions are indicated by arrows in the horizontal plane of the three-dimensional plot and then projected by broken lines into the vertical plane of the spectra for comparison. (b) The same emission spectra shown in (a) have been continued here into a higher wave-number region. Computed cavity-mode positions for this region are shown in a similar way with arrows pointing up (down) indicating TE (TM) modes.

Fig. 5
Fig. 5

Cross correlation of a large number of computed possible mode assignments with the measured emission lines results in a single dominant peak representing a match to virtually all (see text) of the observed emission lines. This demonstrates the uniqueness of the cavity-mode assignment of the experimental data.

Fig. 6
Fig. 6

Total emission integrated over all wavelengths (a) and elastic scattering of the pump radiation (d) were measured from droplets as a function of VOAG frequency. The scattering spectrum was then matched by computation (c) to determine droplet sizes (see text), and corresponding cavity-mode positions were then plotted (b) to identify the observed peaks with input resonance modes. Input resonances in the droplet integrated emission appear for orders 3–5, while orders 5 and 6 are expressed in the elastic scattering.

Tables (1)

Tables Icon

Table I Input Resonance Efficiency

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a = ( 3 q / 4 π f ) 1 / 3 .

Metrics