Abstract

We have determined the relationship between residual proton (hydrogen) concentration and optical absorption at 1.06 μm in highly deuterated potassium dihydrogen phosphate (KDP). The proton concentration was determined by nuclear magnetic resonance (NMR) spectroscopy and the absorbance was measured by calorimetry. We obtained a hydrogen concentration dependence of 396 ± 55 parts in 106 (ppm) cm−1/% hydrogen for the o- (ordinary-) polarized absorbance at 1.064 μm, and 45 ± 7 ppm cm−1/% hydrogen for the e- (extraordinary) polarization. In addition, the KDP crystals we tested have residual (hydrogen-independent) o- and e-polarized absorbances of 958 ± 228 ppm cm−1 and 343 ± 28 ppm cm−1, respectively, whose origin is unknown. We also found that the crystal deuterium–hydrogen (D–H) ratio can be related to the D–H ratio of the growth solution by a simple ideal mixture model with a segregation coefficient of 0.684 ± 0.044.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
    [Crossref]
  2. D. Eimerl, “Thermal aspects of electro-optic switches,” IEEE J. Quantum Electron. QE-23, 2238–2251 (1987).
    [Crossref]
  3. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
    [Crossref]
  4. E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
    [Crossref]
  5. G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
    [Crossref]
  6. M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).
  7. G. M. Loiacono, “Crystal growth of KH2PO4,” Ferroelectrics 71, 49–75 (1987).
    [Crossref]
  8. The details of the growth method are proprietary; for more information contact Cleveland Crystals, Inc.
  9. D. A. Pinnow, T. C. Rich, “Development of a calorimetric method for making precision optical absorption measurements,” Appl. Opt. 12, 984–992 (1973).
    [Crossref] [PubMed]
  10. A. S. Barker, A. J. Sievers, “Optical studies of the vibrational properties of disordered solids,” Rev. Mod. Phys. 47, Supp. 2, S1–S180 (1975).
    [Crossref]
  11. R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
    [Crossref]
  12. R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
    [Crossref]

1987 (5)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[Crossref]

D. Eimerl, “Thermal aspects of electro-optic switches,” IEEE J. Quantum Electron. QE-23, 2238–2251 (1987).
[Crossref]

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[Crossref]

G. M. Loiacono, “Crystal growth of KH2PO4,” Ferroelectrics 71, 49–75 (1987).
[Crossref]

R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
[Crossref]

1975 (1)

A. S. Barker, A. J. Sievers, “Optical studies of the vibrational properties of disordered solids,” Rev. Mod. Phys. 47, Supp. 2, S1–S180 (1975).
[Crossref]

1974 (2)

R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
[Crossref]

G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
[Crossref]

1973 (1)

1970 (1)

E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
[Crossref]

Balascio, J. F.

G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
[Crossref]

Barker, A. S.

A. S. Barker, A. J. Sievers, “Optical studies of the vibrational properties of disordered solids,” Rev. Mod. Phys. 47, Supp. 2, S1–S180 (1975).
[Crossref]

Ebbers, C.

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[Crossref]

D. Eimerl, “Thermal aspects of electro-optic switches,” IEEE J. Quantum Electron. QE-23, 2238–2251 (1987).
[Crossref]

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[Crossref]

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Elliot, R. J.

R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
[Crossref]

Krumhansl, J. A.

R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
[Crossref]

Kuhs, W. F.

R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
[Crossref]

Leath, P. L.

R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
[Crossref]

Levin, S.

E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
[Crossref]

Loiacono, G. M.

G. M. Loiacono, “Crystal growth of KH2PO4,” Ferroelectrics 71, 49–75 (1987).
[Crossref]

G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
[Crossref]

Nelmes, R. J.

R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
[Crossref]

Norton, M.

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Osborne, W.

G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
[Crossref]

Pelah, I.

E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
[Crossref]

Petty, C.

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Pinnow, D. A.

Rich, T. C.

Sievers, A. J.

A. S. Barker, A. J. Sievers, “Optical studies of the vibrational properties of disordered solids,” Rev. Mod. Phys. 47, Supp. 2, S1–S180 (1975).
[Crossref]

Tun, Z.

R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
[Crossref]

Velsko, S.

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Wiener (Avnear), E.

E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. M. Loiacono, J. F. Balascio, W. Osborne, “Effect of deuteration on the ferroelectric transition temperature and the distribution coefficient of deuteration in K(H1–xDx)2PO4,” Appl. Phys. Lett. 24, 455–456 (1974).
[Crossref]

Ferroelectrics (3)

G. M. Loiacono, “Crystal growth of KH2PO4,” Ferroelectrics 71, 49–75 (1987).
[Crossref]

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[Crossref]

R. J. Nelmes, Z. Tun, W. F. Kuhs, “A compilation of accurate structural parameters for KDP and DKDP, and a user’s guide to their crystal structures,” Ferroelectrics 71, 125–141 (1987).
[Crossref]

IEEE J. Quantum Electron. (2)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987).
[Crossref]

D. Eimerl, “Thermal aspects of electro-optic switches,” IEEE J. Quantum Electron. QE-23, 2238–2251 (1987).
[Crossref]

J. Chem. Phys. (1)

E. Wiener (Avnear), S. Levin, I. Pelah, “Proton dynamics in KH2PO4 type ferroelectrics studied by infrared absorption,” J. Chem. Phys. 52, 2881–2891 (1970).
[Crossref]

Rev. Mod. Phys. (2)

A. S. Barker, A. J. Sievers, “Optical studies of the vibrational properties of disordered solids,” Rev. Mod. Phys. 47, Supp. 2, S1–S180 (1975).
[Crossref]

R. J. Elliot, J. A. Krumhansl, P. L. Leath, “Theory and properties of randomly disordered crystals and related physical systems,” Rev. Mod. Phys. 46(3), 465–544 (1974).
[Crossref]

Other (2)

The details of the growth method are proprietary; for more information contact Cleveland Crystals, Inc.

M. Norton, D. Eimerl, C. Ebbers, S. Velsko, C. Petty, “KD*P frequency doubler for high average power applications” in Solid-State Lasers, G. Dube, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1223, 75–83 (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical absorption versus protonation level for highly deuterated KD*P at λ = 1.064 μm.

Fig. 2
Fig. 2

The hydrogen content of KD*P crystals depends linearly on the hydrogen content of the growth solution at high deuteration levels (% deuterated > 90%).

Tables (5)

Tables Icon

Table I Measured Deuteration Levels of KDP Samples

Tables Icon

Table II Additional KD*P Samples That Were Used to Check Precision of NMR Measurements

Tables Icon

Table III Absorption at 1.064 μm in KDP Sample Set A

Tables Icon

Table IV Data and Least-Squares Fit Parameters of Protonation Versus Absorption Measurements

Tables Icon

Table V Refined Data and Least-Squares Fit Parameters of Protonation Versus Absorption Measurements on Crystal Set B

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

% D crys = 100 - ( 100 - % D sol ) × 1.5.
X D C X D S = A ( 1 - X D S ) ,
1 X H C - 1 1 X H S - 1 = K S = 1 X D S - 1 1 X D C - 1 .
X D C X D S = K S 1 + ( K S - 1 ) X D S .
X D C = 1 - ( 1 - X D S ) K S - 1 .
X = j - 1 N ( α o j - α o + D ) 2 + ( α e j - α e + D ) 2
D = 1 2 ( α o - α e ) - 1 N j = 1 N ( α o j - α o ) .
f H C = F H S , f D C = F D S .
f H C = X H S f H S 0 , f D C = X D C f D S 0 ,
f T C = f H C + f D C ,
f H C = X H C f T C , f D C = X D C f T C .

Metrics