Abstract

We report on the measurement of a frequency match between the oscillation frequency of the Nd:YAG laser at 1.064 μm and a line in the vibration–rotation spectrum of the CO2 molecule. The line occurs near the center of the Nd:YAG gain profile and is inferred to be narrow from a knowledge of the CO2 molecular structure. The significance of the frequency match lies in its application as a reference for absolute-frequency stabilization of the Nd:YAG laser.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser Stark spectrometer for the measurement of ammonia in flue gas

Adriaan J. L. Verhage, Rudy A. Rooth, and Leo W. Wouters
Appl. Opt. 32(30) 5856-5866 (1993)

Doppler-free laser-induced fluorescence of oxygen atoms in an atmospheric-pressure flame

Mark J. Dyer and David R. Crosley
Opt. Lett. 14(1) 12-14 (1989)

Photoacoustic technique for the measurement of absorption line profiles

Robert P. Fiegel, Paul B. Hays, and Wayne M. Wright
Appl. Opt. 28(7) 1401-1408 (1989)

References

  • View by:
  • |
  • |
  • |

  1. K. Wallmeroth, R. Letterer, “Cesium frequency standard for lasers at λ = 1.06 μm,” Opt. Lett. 15, 812–814 (1990).
    [Crossref] [PubMed]
  2. O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 micron Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986).
  3. W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988).
  4. T. H. Jeys, A. A. Brailove, A. Mooradian, “Sum frequency generation of sodium resonance radiation,” Appl. Opt. 28, 2588–2591 (1989).
    [Crossref] [PubMed]
  5. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J. M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987); L. S. Rothman, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass. (personal communication, 1990).
    [Crossref] [PubMed]
  6. K. L. SooHoo, “Pressure shifts in carbon dioxide and its isotopes,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).
  7. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956), p. 124.

1990 (1)

1989 (1)

1987 (1)

1986 (1)

O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 micron Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986).

Barbe, A.

Brailove, A. A.

Brown, L. R.

Camy-Peyret, C.

Flaud, J. M.

Gamache, R. R.

Goldman, A.

Husson, N.

Jeys, T. H.

Koechner, W.

W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988).

Letterer, R.

Mooradian, A.

Orlov, O. A.

O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 micron Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986).

Pickett, H. M.

Poynter, R. L.

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956), p. 124.

Rinsland, C. P.

Rothman, L. S.

Smith, M. A. H.

SooHoo, K. L.

K. L. SooHoo, “Pressure shifts in carbon dioxide and its isotopes,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).

Toth, R. A.

Ustyugov, V. I.

O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 micron Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986).

Wallmeroth, K.

Appl. Opt. (2)

Opt. Lett. (1)

Sov. Tech. Phys. Lett. (1)

O. A. Orlov, V. I. Ustyugov, “Molecular cesium reference for frequency stabilization of a 1.06 micron Nd:YAG laser,” Sov. Tech. Phys. Lett. 12, 120 (1986).

Other (3)

W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988).

K. L. SooHoo, “Pressure shifts in carbon dioxide and its isotopes,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956), p. 124.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the experiment showing the multiple-pass absorption cell and the arrangement for deriving the signal and reference beams. The frequency of the laser is swept 25 GHz in 50 s by the sawtooth oscillator. The chopper operates at 1 kHz. The sweep signal and the difference between the reference and signal beams are stored for computer data analysis. PBS, polarizing beam splitter; IS/PD1 and IS/PD2, combination integrating spheres and photodiodes; M1 and M2, angles of mirrors, which can be dithered as shown in the diagram.

Fig. 2
Fig. 2

Measured absorption line of CO2. The bottom pair of curves shows the signal for 253 Torr of CO2 and a Lorentzian fit to the data. The upper curve shows the signal for < 1 Torr of CO2. The full width, half maximum of the Lorentzian fit is 2.45 GHz.

Metrics