Abstract

Calculated aerosol backscatter for three common atmospheric aerosol compositions is higher at 2.1 μm than at 9.1 μm for low backscatter conditions and almost comparable for high backscatter conditions.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Curran, ed., LAWS, Laser Atmospheric Wind Sounder, Earth Observing System Instrument Panel Report, (National Aeronautics and Space Administration, Washington, D.C., 1987), Vol. IIg.
  2. A. D. Clarke, “Aerosol physical chemistry in remote marine regions,” J. Aerosol Sci. 19, 1195–1198 (1988).
    [CrossRef]
  3. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modelling atmospheric aerosol backscatter at CO2 wavelengths. 1: Aerosol properties, modeling techniques, and associated problems,” Appl. Opt. 22, 1655–1665 (1983).
    [CrossRef] [PubMed]
  4. O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
    [CrossRef]
  5. K. F. Palmer, D. Williams, “Optical constants of sulfuric acid; application to Venus,” Appl. Opt. 14, 208–219 (1976).
  6. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (Air Force Geophysical Laboratory, Hanscom Air Force Base, Bedford, Mass., 1979), pp. 17–18.
  7. G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
    [CrossRef]
  8. V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

1988

A. D. Clarke, “Aerosol physical chemistry in remote marine regions,” J. Aerosol Sci. 19, 1195–1198 (1988).
[CrossRef]

1983

1976

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
[CrossRef]

K. F. Palmer, D. Williams, “Optical constants of sulfuric acid; application to Venus,” Appl. Opt. 14, 208–219 (1976).

1908

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Bowdle, D.

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Clarke, A. D.

A. D. Clarke, “Aerosol physical chemistry in remote marine regions,” J. Aerosol Sci. 19, 1195–1198 (1988).
[CrossRef]

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Deepak, A.

Farrukh, U. O.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (Air Force Geophysical Laboratory, Hanscom Air Force Base, Bedford, Mass., 1979), pp. 17–18.

Jarzembski, M.

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Kent, G. S.

Khare, B. N.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
[CrossRef]

Mie, G.

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Palmer, K. F.

Pollack, J. B.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
[CrossRef]

Porter, J.

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (Air Force Geophysical Laboratory, Hanscom Air Force Base, Bedford, Mass., 1979), pp. 17–18.

Srivastava, V.

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Toon, O. B.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
[CrossRef]

Williams, D.

Yue, G. K.

Ann. Phys.

G. Mie, “A contribution to the optics of turbid media, especially colloidal metallic suspensions,” Ann. Phys. 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

J. Aerosol Sci.

A. D. Clarke, “Aerosol physical chemistry in remote marine regions,” J. Aerosol Sci. 19, 1195–1198 (1988).
[CrossRef]

J. Geophys. Res.

O. B. Toon, J. B. Pollack, B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 8, 5733–5748 (1976).
[CrossRef]

Other

R. J. Curran, ed., LAWS, Laser Atmospheric Wind Sounder, Earth Observing System Instrument Panel Report, (National Aeronautics and Space Administration, Washington, D.C., 1987), Vol. IIg.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (Air Force Geophysical Laboratory, Hanscom Air Force Base, Bedford, Mass., 1979), pp. 17–18.

V. Srivastava, A. D. Clarke, J. Porter, M. Jarzembski, D. Bowdle, “Comparison of CO2 backscatter using Mie theory from aerosol measurements over the Pacific Basin with lidar data,” in Proceedings of the Seventh Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1991), pp. J268–J271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Mie theory calculations of single-particle backscatter cross section σ and differential backscatter coefficient dβ/d logr with a lognormal size distribution as a function of particle radius r for various aerosol compositions for wavelengths (a) 2.1 μm and (b) 9.1 μm.

Fig. 2
Fig. 2

(a) Comparison of calculated backscatter coefficient β for wavelengths of 2.1 and 9.1 μm with aerosol concentrations N0 of 0.1 and 10 particles/cm3, and σg = 1.5. The geometric mean particle radius rg is varied to give the range of β; solid diamonds represent β values for rg = 0.25 μm. (b) Ratio of β(2.1) to β(9.1) [from Fig. 2(a)] as a function of rg.

Fig. 3
Fig. 3

Calculated backscatter coefficient β as a function of wavelength λ for rg = 0.6 μm and rg = 0.15 μm with constant N0 = 1 particle/cm3 and σg = 1.5. Peaks in β are due to optical resonances in the aerosol material.

Metrics