Abstract

The biological photochrome bacteriorhodopsin (BR) is contained within the purple membrane (PM) of Halobacterium halobium. Artificial derivatives with improved optical properties can be generated by genetic methods and isolated from mutated halobacterial strains. The use of PM films that contain wild-type BR and BR variants as real-time recording media for various holographic applications has been reported previously, and the advantages of BR variants have been demonstrated. The high reversibility (≫ 105 record/erase cycles), the fast time scale of its photoconversions (femtoseconds to milliseconds), and the large photochromic shift (≈ 160 nm) occurring during its photocycle make it a promising material for real-time applications. A dual-axis joint-Fourier-transform (DA-JFT) correlator is used to demonstrate the applicability of PM films in holographic pattern recognition. One major advantage of PM films in this application is their high spatial resolution of more than 5000 lines/mm. Severe restrictions on the overall performance of the DA-JFT correlator system are caused by scattered light and result in a low signal-to-noise ratio. Since PM patches typically have a diameter in the range of the visible wavelengths that are used for hologram recording, light scattering is an intrinsic problem of PM films. The polarization recording properties of PM films are employed to overcome this problem. More than 20-fold improvement of the signal-to-noise ratio in the DA-JFT correlator output is obtained.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
    [CrossRef]
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  3. T. C. Lee, J. Rebholz, P. Tamura, “Dual-axis joint-Fourier-transform correlator,” Opt. Lett. 4, 121–123 (1979).
    [CrossRef] [PubMed]
  4. S. H. Lee, ed., Optical Information Processing, Vol. 48 of Topics in Applied Physics (Springer-Verlag, Berlin, 1981).
    [CrossRef]
  5. D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).
  6. N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).
  7. N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).
  8. V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.
  9. N. Hampp, C. Bräuchle, “Bacteriorhodopsin and its functional variants: Potential applications in modern optics,” in Photochromism: Molecules and Systems, H. Dürr, H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990), pp. 954–975.
  10. P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
    [CrossRef] [PubMed]
  11. T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989).
    [CrossRef]
  12. J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990).
    [CrossRef]
  13. N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
    [CrossRef] [PubMed]
  14. N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
    [CrossRef]
  15. D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).
  16. J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).
  17. J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).
  18. A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
    [CrossRef]
  19. A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).
  20. D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973).
    [CrossRef] [PubMed]
  21. M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
    [CrossRef]
  22. K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
    [CrossRef] [PubMed]
  23. G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
    [CrossRef] [PubMed]
  24. T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).
  25. M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
    [CrossRef]
  26. D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
    [CrossRef] [PubMed]
  27. T. C. Lee, D. Gossen, “Generalized Fourier-transform holography and its applications,” Appl. Opt. 10, 961–963 (1971).
    [CrossRef] [PubMed]
  28. D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup,” Appl. Opt. 21, 4368–4372 (1982).
    [CrossRef] [PubMed]
  29. T. Todorov, L. Nikolava, N. Tomova, “Polarisation holography. 2: Polarisation holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984).
    [CrossRef] [PubMed]
  30. J. P. Herriau, J. P. Huignard, P. Anbourg, “Some polarization properties of volume holograms in Bi12SiSO20 crystals and applications,” Appl. Opt. 17, 1851–1856 (1978).
    [CrossRef] [PubMed]
  31. B. Javidi, “Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator,” Opt. Commun. 75, 8–13 (1990).
    [CrossRef]
  32. X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
    [CrossRef]

1990 (5)

J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990).
[CrossRef]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

B. Javidi, “Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator,” Opt. Commun. 75, 8–13 (1990).
[CrossRef]

X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
[CrossRef]

1989 (6)

M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
[CrossRef]

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989).
[CrossRef]

1988 (2)

P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
[CrossRef] [PubMed]

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

1986 (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

1985 (2)

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).

1984 (2)

T. Todorov, L. Nikolava, N. Tomova, “Polarisation holography. 2: Polarisation holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984).
[CrossRef] [PubMed]

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

1983 (1)

D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).

1982 (1)

1979 (1)

1978 (1)

1973 (1)

D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973).
[CrossRef] [PubMed]

1971 (3)

A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).

T. C. Lee, D. Gossen, “Generalized Fourier-transform holography and its applications,” Appl. Opt. 10, 961–963 (1971).
[CrossRef] [PubMed]

1966 (1)

1964 (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Anbourg, P.

Bazhenov, V. Yu.

V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Beece, D.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Blaurock, A. E.

A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).

Braiman, M. S.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Bräuchle, C.

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

N. Hampp, C. Bräuchle, “Bacteriorhodopsin and its functional variants: Potential applications in modern optics,” in Photochromism: Molecules and Systems, H. Dürr, H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990), pp. 954–975.

N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).

Burykin, N. M.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Chekulayeva, L. N.

T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).

Chernavskii, D. S.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Chizhov, I. V.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Dancsházy, Z.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Dukova, T. V.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Dyukova, T. V.

T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).

Gerwert, K.

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

Goodman, J. W.

Gossen, D.

Gregory, D. A.

X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
[CrossRef]

Groma, G. I.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Hampp, N.

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).

N. Hampp, C. Bräuchle, “Bacteriorhodopsin and its functional variants: Potential applications in modern optics,” in Photochromism: Molecules and Systems, H. Dürr, H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990), pp. 954–975.

Helgerson, S. L.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Herriau, J. P.

Hess, B.

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

Huignard, J. P.

Ikegami, A.

P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
[CrossRef] [PubMed]

Ivanitskii, G. R.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

Javidi, B.

B. Javidi, “Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator,” Opt. Commun. 75, 8–13 (1990).
[CrossRef]

Joyeux, D.

Kataoka, M.

M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
[CrossRef]

Keszthelyi, L.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Khorana, H. G.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Kinositu, K.

P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
[CrossRef] [PubMed]

Korchemskaya, E. Y.

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

Kouyama, P.

P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
[CrossRef] [PubMed]

Kouyama, T.

T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989).
[CrossRef]

Krippahl, G.

D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).

Lee, T. C.

Lowenthal, S.

Lozier, R. H.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Lu, X. J.

X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
[CrossRef]

Marti, T.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Meessen, S.

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

Miller, A.

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

Mogi, T.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Murina, T. M.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Nakasako, M.

M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
[CrossRef]

Nasuda-Kouyama, A.

T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989).
[CrossRef]

Nikolava, L.

Oesterhelt, D.

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990).
[CrossRef]

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).

D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973).
[CrossRef] [PubMed]

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).

N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).

Otomo, J.

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

Prokhorov, A. M.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Rebholz, J.

Rothschild, K. J.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Soppa, J.

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).

Soskin, M. S.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Stern, L. J.

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Stoeckenius, W.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973).
[CrossRef] [PubMed]

A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).

Straub, J.

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

Tamura, P.

Taranenko, V. B.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Tittor, J.

J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990).
[CrossRef]

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

Todorov, T.

Tokmaga, F.

M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
[CrossRef]

Tomova, N.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Vasnetsov, M. V.

V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

Vsevolodov, N. N.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).

Weaver, C. S.

Wolber, P. K.

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Yu, F. T. S.

X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
[CrossRef]

Zubov, B. V.

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Adv. Biophys. (1)

P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988).
[CrossRef] [PubMed]

Ann. Microbiol. (Paris) B (1)

D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).

Appl. Opt. (5)

Appl. Phys. B (1)

X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990).
[CrossRef]

Avtometriya (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).

Biochem. (2)

T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989).
[CrossRef]

M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988).
[CrossRef]

Biochim. Biophys. Acta (1)

A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990).
[CrossRef]

Biophys. J. (2)

N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990).
[CrossRef] [PubMed]

G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984).
[CrossRef] [PubMed]

Biophysics (1)

T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).

FEBS Lett. (2)

M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989).
[CrossRef]

J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

J. Biol. Chem. (2)

J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).

J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).

Nature (London) (2)

A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).

D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).

Opt. Commun. (2)

N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985).
[CrossRef]

B. Javidi, “Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator,” Opt. Commun. 75, 8–13 (1990).
[CrossRef]

Opt. Lett. (1)

Photochem. Photobiol. (1)

D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973).
[CrossRef] [PubMed]

K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989).
[CrossRef] [PubMed]

Other (4)

S. H. Lee, ed., Optical Information Processing, Vol. 48 of Topics in Applied Physics (Springer-Verlag, Berlin, 1981).
[CrossRef]

N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).

V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.

N. Hampp, C. Bräuchle, “Bacteriorhodopsin and its functional variants: Potential applications in modern optics,” in Photochromism: Molecules and Systems, H. Dürr, H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990), pp. 954–975.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the photochemical and thermal conversions of BR. The initial state and the intermediates of the BR photocycle are abbreviated by their common single-letter code. In the M-type recording the M state is populated from the B state by optical pumping. Since M has the longest lifetime of all the intermediates it is effectively populated. In this case the photochemical transition M → B is used for hologram formation.

Fig. 2
Fig. 2

Experimental setup of the DA-JFT correlator that is used for optical pattern recognition with PM media. The postlens Fourier transformation was realized by lenses L1 and L2 (f = 36 mm) and FTL1 and FTL2 (f = 200 mm). Circular light for the recording of polarization holograms was obtained with Glan–Taylor prisms (GT’s) and adjustable λ/4 plates. The transmitted writing and diffracted reading beams are separated by a color filter F. The desired polarization state is selected by a rotatable linear polarizer P.

Fig. 3
Fig. 3

Holographic correlation of a nine-letter pattern with several signal letters. The master pattern in the middle is correlated with the different single-letter patterns, and the obtained correlation signals, which are monitored by a CCD camera, are photographed from a TV screen. The brightness of the correlation peaks corresponds to the degree of similarity of the letters.

Fig. 4
Fig. 4

Improvement in the SNR of correlation signals obtained by polarization recording in PM films. Three different orientations of the linear polarizing analyzer with regard to the linear readout beam are shown. The angle of the rotation of the analyzer from the reconstructing beam is given at the left top edge. In cases in which polarization selection is not used, an overlapped output signal of the top and bottom picture is observed that could not be evaluated further.

Fig. 5
Fig. 5

Pseudo-three-dimensional plot of the intensity distribution of the correlation signals corresponding to the X as shown in Figs. 3 and 4.

Fig. 6
Fig. 6

Correlation of a sentence with four different parts. Bright correlation spots are obtained for larger fractions such as Fourier transform, distribution, and amplitude. Correlation of the single word “the” demonstrates that the location of the five “the” patterns is possible and several correlations for similar but not identical patterns, e.g., “that,” are obtained.

Tables (2)

Tables Icon

Table I Geometrical Limitations of the DA-JFT Correlator Setup and the Data Masks Used in the Experiments

Tables Icon

Table II Relationships of the Polarization States for B-Type and M-Type Holographic Polarization Recording in PM Filmsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SBW 2 f X · tan θ ,

Metrics