Abstract

An associative memory is implemented by using a binary phase-only filter as the memory element in a two-focal-length (2-f) correlator architecture. A sharp autocorrelation peak, combined with the 2-f architecture, allows the noise to be separated adequately from the signal such that a simple plane mirror can be used in the correlation plane instead of a nonlinearity.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Owechko, “Nonlinear holographic associative memories,” IEEE J. Quantum Electron. 25, 619–634 (1989).
    [CrossRef]
  2. Y. Owechko, “Optoelectronic resonator neural networks,” Appl. Opt. 26, 5104–5111 (1987).
    [CrossRef] [PubMed]
  3. E. G. Paek, D. Psaltis, “Optical associative memory using Fourier transform holograms,” Opt. Eng. 26, 428–433 (1987).
  4. E. G. Paek, A. Von Lehmen, “Real time holographic associative memory for identifying words in a continuous letter string,” Opt. Eng. 28, 519–525 (1989).
  5. G. Dunning, E. Marom, Y. Owechko, B. Soffer, “All-optical associative memory with shift invariance and multiple-image recall,” Opt. Lett. 12, 346–348 (1987).
    [CrossRef] [PubMed]
  6. B. Soffer, G. Dunning, Y. Owechko, E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).
    [CrossRef] [PubMed]
  7. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 387–400 (1963).
  8. A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
    [CrossRef]
  9. J. Horner, P. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef] [PubMed]
  10. J. Horner, J. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609–611 (1985).
    [CrossRef] [PubMed]
  11. J. Horner, H. Bartelt, “Two-bit correlators,” Appl. Opt. 24, 2889–2893 (1985).
    [CrossRef] [PubMed]
  12. M. Flavin, J. Horner, “Amplitude encoded phase-only filters,” Appl. Opt. 28, 1692–1696 (1989).
    [CrossRef] [PubMed]
  13. P. Gianino, Rome Laboratory, Hanscom Air Force Base, Mass. 02173 (personal communication).
  14. K. Fielding, J. Horner, C. Makekeau, “Modified two-focal length optical correlator,” Appl. Opt. 29, 4932–4933 (1990).
    [CrossRef]
  15. D. Flannery, J. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989).
    [CrossRef]
  16. D. Cottrell, R. Lilly, J. Davis, T. Day, “Optical correlator performance of binary phase only filters using Fourier and Hartley transforms,” Appl. Opt. 26, 3755–3757 (1987).
    [CrossRef] [PubMed]
  17. H. K. Liu, J. G. Duthie, “Real-time screen-aided multiple-image optical holographic matched-filter correlator,” Appl. Opt. 21, 3278–3286 (1982).
    [CrossRef] [PubMed]
  18. J. J. Couture, R. A. Lessard, “Diffraction efficiency of specular multiplexed holograms recorded on Kodak 649f plates,” Appl. Opt. 18, 3652–3660 (1979).
    [CrossRef] [PubMed]
  19. D. A. Gregory, H. K. Liu, “Large-memory real-time multichannel multiplexed pattern recognition,” Appl. Opt. 23, 4560–4570 (1984).
    [CrossRef] [PubMed]
  20. J. R. Leger, S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
    [CrossRef] [PubMed]
  21. K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).
  22. D. M. Cottrell, J. A. Davis, M. P. Schamschula, R. A. Lilly, “Multiplexing capabilities of the binary phase-only filter,” Appl. Opt. 26, 934–937 (1987).
    [CrossRef] [PubMed]
  23. R. Weverka, K. Wagner, M. Saffman, “Fully interconnected, two-dimensional neural arrays using wavelength-multiplexed volume holograms,” Opt. Lett. 16, 826–828 (1991).
    [CrossRef] [PubMed]

1991 (1)

1990 (1)

K. Fielding, J. Horner, C. Makekeau, “Modified two-focal length optical correlator,” Appl. Opt. 29, 4932–4933 (1990).
[CrossRef]

1989 (4)

D. Flannery, J. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989).
[CrossRef]

Y. Owechko, “Nonlinear holographic associative memories,” IEEE J. Quantum Electron. 25, 619–634 (1989).
[CrossRef]

E. G. Paek, A. Von Lehmen, “Real time holographic associative memory for identifying words in a continuous letter string,” Opt. Eng. 28, 519–525 (1989).

M. Flavin, J. Horner, “Amplitude encoded phase-only filters,” Appl. Opt. 28, 1692–1696 (1989).
[CrossRef] [PubMed]

1987 (5)

1986 (1)

1985 (2)

1984 (2)

1982 (2)

1981 (1)

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

1980 (1)

K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).

1979 (1)

1963 (1)

Bartelt, H.

Bondurant, R. A.

K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).

Cottrell, D.

Cottrell, D. M.

Couture, J. J.

Davis, J.

Davis, J. A.

Day, T.

Dunning, G.

Duthie, J. G.

Fielding, K.

K. Fielding, J. Horner, C. Makekeau, “Modified two-focal length optical correlator,” Appl. Opt. 29, 4932–4933 (1990).
[CrossRef]

Flannery, D.

D. Flannery, J. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989).
[CrossRef]

Flavin, M.

Gianino, P.

J. Horner, P. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
[CrossRef] [PubMed]

P. Gianino, Rome Laboratory, Hanscom Air Force Base, Mass. 02173 (personal communication).

Gregory, D. A.

Horner, J.

Lee, S. H.

Leger, J.

Leger, J. R.

Leib, K. G.

K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).

Lessard, R. A.

Lilly, R.

Lilly, R. A.

Lim, J. S.

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Liu, H. K.

Makekeau, C.

K. Fielding, J. Horner, C. Makekeau, “Modified two-focal length optical correlator,” Appl. Opt. 29, 4932–4933 (1990).
[CrossRef]

Marom, E.

Oppenheim, A. V.

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Owechko, Y.

Paek, E. G.

E. G. Paek, A. Von Lehmen, “Real time holographic associative memory for identifying words in a continuous letter string,” Opt. Eng. 28, 519–525 (1989).

E. G. Paek, D. Psaltis, “Optical associative memory using Fourier transform holograms,” Opt. Eng. 26, 428–433 (1987).

Psaltis, D.

E. G. Paek, D. Psaltis, “Optical associative memory using Fourier transform holograms,” Opt. Eng. 26, 428–433 (1987).

Ronald Wohlers, M.

K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).

Saffman, M.

Schamschula, M. P.

Soffer, B.

van Heerden, P. J.

Von Lehmen, A.

E. G. Paek, A. Von Lehmen, “Real time holographic associative memory for identifying words in a continuous letter string,” Opt. Eng. 28, 519–525 (1989).

Wagner, K.

Weverka, R.

Appl. Opt. (13)

P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 387–400 (1963).

J. J. Couture, R. A. Lessard, “Diffraction efficiency of specular multiplexed holograms recorded on Kodak 649f plates,” Appl. Opt. 18, 3652–3660 (1979).
[CrossRef] [PubMed]

J. R. Leger, S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982).
[CrossRef] [PubMed]

H. K. Liu, J. G. Duthie, “Real-time screen-aided multiple-image optical holographic matched-filter correlator,” Appl. Opt. 21, 3278–3286 (1982).
[CrossRef] [PubMed]

J. Horner, P. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
[CrossRef] [PubMed]

D. A. Gregory, H. K. Liu, “Large-memory real-time multichannel multiplexed pattern recognition,” Appl. Opt. 23, 4560–4570 (1984).
[CrossRef] [PubMed]

D. M. Cottrell, J. A. Davis, M. P. Schamschula, R. A. Lilly, “Multiplexing capabilities of the binary phase-only filter,” Appl. Opt. 26, 934–937 (1987).
[CrossRef] [PubMed]

D. Cottrell, R. Lilly, J. Davis, T. Day, “Optical correlator performance of binary phase only filters using Fourier and Hartley transforms,” Appl. Opt. 26, 3755–3757 (1987).
[CrossRef] [PubMed]

Y. Owechko, “Optoelectronic resonator neural networks,” Appl. Opt. 26, 5104–5111 (1987).
[CrossRef] [PubMed]

M. Flavin, J. Horner, “Amplitude encoded phase-only filters,” Appl. Opt. 28, 1692–1696 (1989).
[CrossRef] [PubMed]

J. Horner, H. Bartelt, “Two-bit correlators,” Appl. Opt. 24, 2889–2893 (1985).
[CrossRef] [PubMed]

J. Horner, J. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609–611 (1985).
[CrossRef] [PubMed]

K. Fielding, J. Horner, C. Makekeau, “Modified two-focal length optical correlator,” Appl. Opt. 29, 4932–4933 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Owechko, “Nonlinear holographic associative memories,” IEEE J. Quantum Electron. 25, 619–634 (1989).
[CrossRef]

Opt. Eng. (3)

E. G. Paek, D. Psaltis, “Optical associative memory using Fourier transform holograms,” Opt. Eng. 26, 428–433 (1987).

E. G. Paek, A. Von Lehmen, “Real time holographic associative memory for identifying words in a continuous letter string,” Opt. Eng. 28, 519–525 (1989).

K. G. Leib, R. A. Bondurant, M. Ronald Wohlers, “Optical matched filter correlator memory techniques and storage capacity,” Opt. Eng. 19,414–420 (1980).

Opt. Lett. (3)

Proc. IEEE (2)

A. V. Oppenheim, J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

D. Flannery, J. Horner, “Fourier optical signal processors,” Proc. IEEE 77, 1511–1527 (1989).
[CrossRef]

Other (1)

P. Gianino, Rome Laboratory, Hanscom Air Force Base, Mass. 02173 (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of BPOF associative memory. Associative memory output occurs at camera 1. f1 = 50 cm, d2 = 48.5 cm, d3 = 1.5 cm, f2 = 25 cm, and f3 = 10 cm.

Fig. 2
Fig. 2

Illustration of the operation of associative memory. A, input to associative memory; B, associative memory output (from camera 1 in Fig. 1).

Fig. 3
Fig. 3

Illustration of the operation of associative memory. A, input to associative memory (85% of original image apertured); B, associative memory output; C, associative memory output constructed solely from the noise in the system.

Fig. 4
Fig. 4

Response of the associative memory for different inputs. A, associative memory output when input image has been rotated 90°; B, output when the input image is an Air Force resolution chart; C, output when input image is removed (dc only).

Fig. 5
Fig. 5

Alternate experimental setup with a spherical mirror in the correlation plane (the radius of the mirror, Rmirror, is 32 cm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( u , v ) = { 1 , 0 ϕ π - 1 , π ϕ 2 π .
1 / f corr = 1 / f 2 - 1 / d 2 + d 3 / d 2 f 2 .

Metrics