Abstract

Techniques for implementing perfect shuffle and inverse perfect shuffle operations with the aid of a single holographic optical element are presented. The element is composed of subholographic lenses which operate on a different input area. For the inverse perfect shuffle operation, polarization coding is added in order to separate the input into distinct groups. Experimental results illustrating the effectiveness of the proposed techniques are given.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
    [CrossRef] [PubMed]
  2. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  3. K. H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  4. G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–900 (1988).
  5. S. Bain, K. Xu, J. Hong, “Optical perfect shuffle using Wollaston prisms,” Appl. Opt. 30, 173–174 (1991).
    [CrossRef]
  6. H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
    [CrossRef]
  7. J. W. Goodman, “Linear space-variant optical data processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, Berlin, 1981), Chap. 6, p. 248.

1991

1988

K. H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
[CrossRef] [PubMed]

G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–900 (1988).

1986

1971

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Bain, S.

Brenner, K. H.

Goodman, J. W.

J. W. Goodman, “Linear space-variant optical data processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, Berlin, 1981), Chap. 6, p. 248.

Hong, J.

Huang, A.

Lohman, G. E.

G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–900 (1988).

Lohmann, A. W.

Stone, H. S.

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Stork, W.

Stucke, G.

Xu, K.

Appl. Opt.

IEEE Trans. Comput.

H. S. Stone, “Parallel processing with perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Opt. Eng.

G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–900 (1988).

Other

J. W. Goodman, “Linear space-variant optical data processing,” in Optical Information Processing, S. H. Lee, ed. (Springer-Verlag, Berlin, 1981), Chap. 6, p. 248.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement for implementing a two-dimensional PS. Only some of the rays that emerge from the input are shown.

Fig. 2
Fig. 2

Experimental results for an optical two-dimensional PS: (a) input array, (b) output array.

Fig. 3
Fig. 3

Optical arrangement for implementing a one-dimensional PS−1 transform.

Fig. 4
Fig. 4

Experimental results for an optical one-dimensional PS−1: (a) input array, (b) output array.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n = { 2 n if 0 n < N / 2 2 n - N + 1 if N / 2 n < N ,

Metrics