Abstract

Parallel signal preprocessing techniques in an image plane, as suggested by the mechanism of human vision, are used to improve the performance of a solid-state imaging sensor. In this paper a 3 × 3 neighborhood operator, by which the gray level of a particular pixel in a transformed image can be determined from the gray levels of the corresponding pixel and its neighborhood in the original image by using appropriate algorithms, is discussed. Dynamic trade-off of signal-to-noise ratio for resolution depending on the light level is realized by combining a newly designed CCD spatial filter with variable weighting circuitry. Improvement in sensitivity by as much as 11 dB at low light levels and edge enhancement at high light levels is obtained only by varying the weighting circuit gain. The design concepts and circuit layouts are also shown together with the performance data on test imagery.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Sternberg, “Architectures for neighborhood processing,” in Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing (Institute of Electrical and Electronic Engineers, New York, 1981), pp. 374–380.
  2. S. G. Chamberlain, “Advances in CCD scanners with on-chip signal processing for electronic imaging,” Radio Electron. Eng. 50, 249–257 (1980).
    [CrossRef]
  3. G. R. Nudd, P. A. Nygaad, C. L. Jiang, “Application of charge-coupled device technology to two-dimensional image processing,” in Proceedings of the International Conference on Charge Coupled Devices (U. Edinburgh Press, Edinburgh, 1978), paper 3A, pp. 43–51.
  4. J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.
  5. J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 × 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980).
  6. J. T. Carl, J. E. Hall, “Spatial filtering using 3 × 3 kernel convolutions,” in Smart Sensors, D. F. Barbe, ed., Proc. Soc. Photo-Opt. Instrum. Eng.178, 154–161 (1979).
  7. H. R. Wilson, S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
    [CrossRef] [PubMed]
  8. H. R. Wilson, J. R. Bergen, “A four mechanism model for spatial vision,” Vision Res. 19, 19–32 (1979).
    [CrossRef] [PubMed]
  9. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
    [CrossRef]
  10. D. Mar, Vision (Freeman, San Francisco, Calif., 1982).
  11. D. D. Wen, “Design and operation of a floating gate amplifier,” IEEE J. Solid-State Circuits SC-9, 410–419 (1974).
    [CrossRef]
  12. F. O. Huck, C. L. Fales, D. J. Jobson, S. K. Park, R. W. Samms, “Image-plane processing of visual information,” Appl. Opt. 23, 3160–3167 (1984).
    [CrossRef] [PubMed]

1984 (1)

1980 (3)

S. G. Chamberlain, “Advances in CCD scanners with on-chip signal processing for electronic imaging,” Radio Electron. Eng. 50, 249–257 (1980).
[CrossRef]

J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 × 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980).

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[CrossRef]

1979 (1)

H. R. Wilson, J. R. Bergen, “A four mechanism model for spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

1977 (1)

H. R. Wilson, S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

1974 (1)

D. D. Wen, “Design and operation of a floating gate amplifier,” IEEE J. Solid-State Circuits SC-9, 410–419 (1974).
[CrossRef]

Awtrey, J. D.

J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 × 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980).

Bergen, J. R.

H. R. Wilson, J. R. Bergen, “A four mechanism model for spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

Blouke, M. M.

J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.

Breitzmann, J. F.

J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.

Carl, J. T.

J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.

J. T. Carl, J. E. Hall, “Spatial filtering using 3 × 3 kernel convolutions,” in Smart Sensors, D. F. Barbe, ed., Proc. Soc. Photo-Opt. Instrum. Eng.178, 154–161 (1979).

Chamberlain, S. G.

S. G. Chamberlain, “Advances in CCD scanners with on-chip signal processing for electronic imaging,” Radio Electron. Eng. 50, 249–257 (1980).
[CrossRef]

Fales, C. L.

Giese, S. C.

H. R. Wilson, S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

Hall, J. E.

J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 × 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980).

J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.

J. T. Carl, J. E. Hall, “Spatial filtering using 3 × 3 kernel convolutions,” in Smart Sensors, D. F. Barbe, ed., Proc. Soc. Photo-Opt. Instrum. Eng.178, 154–161 (1979).

Hildreth, E.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[CrossRef]

Huck, F. O.

Jiang, C. L.

G. R. Nudd, P. A. Nygaad, C. L. Jiang, “Application of charge-coupled device technology to two-dimensional image processing,” in Proceedings of the International Conference on Charge Coupled Devices (U. Edinburgh Press, Edinburgh, 1978), paper 3A, pp. 43–51.

Jobson, D. J.

Mar, D.

D. Mar, Vision (Freeman, San Francisco, Calif., 1982).

Marr, D.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[CrossRef]

Nudd, G. R.

G. R. Nudd, P. A. Nygaad, C. L. Jiang, “Application of charge-coupled device technology to two-dimensional image processing,” in Proceedings of the International Conference on Charge Coupled Devices (U. Edinburgh Press, Edinburgh, 1978), paper 3A, pp. 43–51.

Nygaad, P. A.

G. R. Nudd, P. A. Nygaad, C. L. Jiang, “Application of charge-coupled device technology to two-dimensional image processing,” in Proceedings of the International Conference on Charge Coupled Devices (U. Edinburgh Press, Edinburgh, 1978), paper 3A, pp. 43–51.

Park, S. K.

Samms, R. W.

Sternberg, S. R.

S. R. Sternberg, “Architectures for neighborhood processing,” in Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing (Institute of Electrical and Electronic Engineers, New York, 1981), pp. 374–380.

Wen, D. D.

D. D. Wen, “Design and operation of a floating gate amplifier,” IEEE J. Solid-State Circuits SC-9, 410–419 (1974).
[CrossRef]

Wilson, H. R.

H. R. Wilson, J. R. Bergen, “A four mechanism model for spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

H. R. Wilson, S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Solid-State Circuits (1)

D. D. Wen, “Design and operation of a floating gate amplifier,” IEEE J. Solid-State Circuits SC-9, 410–419 (1974).
[CrossRef]

Opt. Eng. (1)

J. E. Hall, J. D. Awtrey, “Real-time image enhancement using 3 × 3 pixel neighborhood operator functions,” Opt. Eng. 19, 421–424 (1980).

Proc. R. Soc. London Ser. B (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[CrossRef]

Radio Electron. Eng. (1)

S. G. Chamberlain, “Advances in CCD scanners with on-chip signal processing for electronic imaging,” Radio Electron. Eng. 50, 249–257 (1980).
[CrossRef]

Vision Res. (2)

H. R. Wilson, S. C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Res. 17, 1177–1190 (1977).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

Other (5)

D. Mar, Vision (Freeman, San Francisco, Calif., 1982).

G. R. Nudd, P. A. Nygaad, C. L. Jiang, “Application of charge-coupled device technology to two-dimensional image processing,” in Proceedings of the International Conference on Charge Coupled Devices (U. Edinburgh Press, Edinburgh, 1978), paper 3A, pp. 43–51.

J. E. Hall, J. F. Breitzmann, M. M. Blouke, J. T. Carl, “A multiple output CCD imager for image processing applications,” in Technical Digest of the International Electron Device Meeting (Institute of Electrical and Electronics Engineers, New York; 1978), pp. 415–418.

J. T. Carl, J. E. Hall, “Spatial filtering using 3 × 3 kernel convolutions,” in Smart Sensors, D. F. Barbe, ed., Proc. Soc. Photo-Opt. Instrum. Eng.178, 154–161 (1979).

S. R. Sternberg, “Architectures for neighborhood processing,” in Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing (Institute of Electrical and Electronic Engineers, New York, 1981), pp. 374–380.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Imaging system concept for 3 × 3 neighborhood image-plane signal processing.

Fig. 2
Fig. 2

Spatial frequency responses of an imaging system with image-plane processing for several values of neighborhood weighting W. Results are given for three different aperture responses: (a) W = 1, 0.5, −0.5, −0.25; (b) W = 0, −0.17, −0.25.

Fig. 3
Fig. 3

Photomicrograph of a test chip.

Fig. 4
Fig. 4

Block diagram of a variable weighting circuit.

Fig. 5
Fig. 5

Measured input–output characteristics for two weightings: W = 0 and W = 1.

Fig. 6
Fig. 6

Frequency response of a CCD filter, changing from a low-pass filter (W = 1) to a bandpass filter (W = −1/8).

Fig. 7
Fig. 7

Microcomputor-based test facilities.

Fig. 8
Fig. 8

Examples of processor operation on stored test imagery (input video voltage is 2 V peak to peak).

Fig. 9
Fig. 9

Mean square root noise voltage referred to the floating gate versus weighting parameters W, measured in a no input condition.

Fig. 10
Fig. 10

Comparison of noise voltage (V N ) W and SNR (S/N) W measured at various weighting parameters W set at W = 0. Results are given for two cases in which signal detection is restricted by FGA noise or input noise.

Fig. 11
Fig. 11

Transfer characteristics and noise levels of the filter for two weighting parameters: W = 0 and W = 1.

Fig. 12
Fig. 12

Enhancement of sensitivity: (a) blurred image (W = 0); (b) enhanced processing (W = 1).

Fig. 13
Fig. 13

Information density versus signal charge carriers for low-pass (W = 1) to bandpass (W = −1/8) spatial frequency responses. The dotted curve represents a good example of responses that appropriately control the information density by continuously varying the value of weight W, corresponding with video signal levels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C T = C 0 + C p + C in ,
C inopt = C 0 + C p ,
h i = 1 2 log 2 [ 1 + H ( u , v ) 2 Π ( u , v ) 2 + N ( u , v ) 2 ] d u d v ,

Metrics