Abstract

We demonstrate a fiber-optic acoustic transducer operating in the audio-frequency regime. The device is made of an array of 120 multimode optical fibers and a photorefractive novelty filter. Each fiber in the array acts as a cantilevered mechanical resonator. The resonant frequencies of the fibers logarithmically sample the acoustic spectrum from approximately 100 Hz to 5 kHz. Laser light is injected into all fibers simultaneously and is reflected from the end of each fiber. An optical novelty filter extracts the acoustic information from the reflected light. The output of the novelty filter is essentially a Fourier transform of the acoustic signal. The background intensity in the transducer output corresponds to a driving amplitude of approximately 50 Å. We describe holographic storage of complex sound patterns that use a LiNbO3 crystal and an acoustic transducer.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. F. von Helmholtz, On the Sensations of Tone (Dover, New York, 1954).
  2. G. von Bekesy, Experiments In Hearing, E. G. Wever, ed., translator (McGraw-Hill, New York, 1960), Chap. 11, p. 403.
  3. B. M. Johnstone, A. J. F. Boyle, “Basilar membrane vibration examined with the Mössbauer technique,” Science 158, 389–390 (1967).
    [CrossRef] [PubMed]
  4. W. S. Rhode, “Cochlear partition vibration—recent views,” J. Acoust. Soc. Am. 67, 1696–1703 (1980).
    [CrossRef] [PubMed]
  5. G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
    [CrossRef] [PubMed]
  6. D. Z. Anderson, D. M. Lininger, J. Feinberg, “An optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  7. D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
    [CrossRef]
  8. M. Cronin-Golomb, A. M. Biernacki, C. Lin, H. Kong, “Photorefractive time differentiation of coherent optical images,” Opt. Lett. 12, 1029–1031 (1987).
    [CrossRef] [PubMed]
  9. R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
    [CrossRef]
  10. R. D. Hawkins, “Vibrating optical fibers—a new technique for audio-frequency information processing and pattern recognition,” in Optical Information Processing, D. K. Pollock, C. J. Koester, J. T. Tippett, eds. (Spartan, London, 1963), Chap. 14, pp. 187–198.
  11. P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
    [CrossRef]
  12. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course on Theoretical Physics (Pergamon, London, 1959), Chaps. 17 and 25.
  13. P. N. Ilinykh, O. P. Nestiorkin, B. Ya. Zeldovich, “Nonde-generate two-wave interaction in a photorefractive crystal in an external detecting field,” Opt. Lett. 16, 414–416 (1991).
    [CrossRef] [PubMed]

1991 (1)

1989 (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

1988 (1)

R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
[CrossRef]

1987 (2)

1980 (1)

W. S. Rhode, “Cochlear partition vibration—recent views,” J. Acoust. Soc. Am. 67, 1696–1703 (1980).
[CrossRef] [PubMed]

1978 (1)

P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

1976 (1)

G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
[CrossRef] [PubMed]

1967 (1)

B. M. Johnstone, A. J. F. Boyle, “Basilar membrane vibration examined with the Mössbauer technique,” Science 158, 389–390 (1967).
[CrossRef] [PubMed]

Anderson, D. Z.

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “An optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Biernacki, A. M.

Boyle, A. J. F.

B. M. Johnstone, A. J. F. Boyle, “Basilar membrane vibration examined with the Mössbauer technique,” Science 158, 389–390 (1967).
[CrossRef] [PubMed]

Cronin-Golomb, M.

Cudney, R.

R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
[CrossRef]

Feinberg, J.

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
[CrossRef]

D. Z. Anderson, D. M. Lininger, J. Feinberg, “An optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
[CrossRef] [PubMed]

Flatley, J. P.

P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Hawkins, R. D.

R. D. Hawkins, “Vibrating optical fibers—a new technique for audio-frequency information processing and pattern recognition,” in Optical Information Processing, D. K. Pollock, C. J. Koester, J. T. Tippett, eds. (Spartan, London, 1963), Chap. 14, pp. 187–198.

Ilinykh, P. N.

Johnstone, B. M.

B. M. Johnstone, A. J. F. Boyle, “Basilar membrane vibration examined with the Mössbauer technique,” Science 158, 389–390 (1967).
[CrossRef] [PubMed]

Kong, H.

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course on Theoretical Physics (Pergamon, London, 1959), Chaps. 17 and 25.

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course on Theoretical Physics (Pergamon, London, 1959), Chaps. 17 and 25.

Lin, C.

Lininger, D. M.

Lipes, R.

G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
[CrossRef] [PubMed]

Moffett, M. B.

P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Nestiorkin, O. P.

Pierce, J. R.

G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
[CrossRef] [PubMed]

Pierce, R. M.

R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
[CrossRef]

Rhode, W. S.

W. S. Rhode, “Cochlear partition vibration—recent views,” J. Acoust. Soc. Am. 67, 1696–1703 (1980).
[CrossRef] [PubMed]

Shajenko, P.

P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

von Bekesy, G.

G. von Bekesy, Experiments In Hearing, E. G. Wever, ed., translator (McGraw-Hill, New York, 1960), Chap. 11, p. 403.

von Helmholtz, H. L. F.

H. L. F. von Helmholtz, On the Sensations of Tone (Dover, New York, 1954).

Zeldovich, B. Ya.

Zweig, G.

G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. Z. Anderson, J. Feinberg, “Optical novelty filters,” IEEE J. Quantum Electron. 25, 635–647 (1989).
[CrossRef]

J. Acoust. Soc. Am. (3)

W. S. Rhode, “Cochlear partition vibration—recent views,” J. Acoust. Soc. Am. 67, 1696–1703 (1980).
[CrossRef] [PubMed]

G. Zweig, R. Lipes, J. R. Pierce, “The cochlear compromise,” J. Acoust. Soc. Am. 59, 975–982 (1976).
[CrossRef] [PubMed]

P. Shajenko, J. P. Flatley, M. B. Moffett, “On fiber-optic hydrophone sensitivity,” J. Acoust. Soc. Am. 64, 1286–1288 (1978).
[CrossRef]

Nature London (1)

R. Cudney, R. M. Pierce, J. Feinberg, “The transient detection microscope,” Nature London 332, 424–426 (1988).
[CrossRef]

Opt. Lett. (3)

Science (1)

B. M. Johnstone, A. J. F. Boyle, “Basilar membrane vibration examined with the Mössbauer technique,” Science 158, 389–390 (1967).
[CrossRef] [PubMed]

Other (4)

R. D. Hawkins, “Vibrating optical fibers—a new technique for audio-frequency information processing and pattern recognition,” in Optical Information Processing, D. K. Pollock, C. J. Koester, J. T. Tippett, eds. (Spartan, London, 1963), Chap. 14, pp. 187–198.

L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Vol. 7 of Course on Theoretical Physics (Pergamon, London, 1959), Chaps. 17 and 25.

H. L. F. von Helmholtz, On the Sensations of Tone (Dover, New York, 1954).

G. von Bekesy, Experiments In Hearing, E. G. Wever, ed., translator (McGraw-Hill, New York, 1960), Chap. 11, p. 403.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the setup of the acoustic transducer. The fixed ends of the fibers are imaged after the novelty filter. The obtained output image is a scrambled Fourier transform of the acoustic signal that is driving the fiber array.

Fig. 2
Fig. 2

Fiber array driven by a piezoelectric transducer. The bending of a fiber causes its reflected light to be amplitude and phase modulated.

Fig. 3
Fig. 3

Response of the transducer with respect to the driving amplitude. Iout is the time-averaged optical intensity from the resonating fiber after the novelty filter; Iin is the reflected intensity from the fiber when the loss pump of the novelty filter is blocked; A is the driving amplitude.

Fig. 4
Fig. 4

Lower curve: the driving signal. Upper curve: the output intensity after the novelty filter. The driving amplitude A = 0.02 μm. Clearly the output intensity contains the second harmonic of the driving signal.

Fig. 5
Fig. 5

Frequency response of the acoustic transducer. The photographs are taken after the novelty filter. The acoustic images correspond to (a) no signal applied at the driver, (b) a pure tone applied, and (c) a complex sound with five frequencies applied.

Fig. 6
Fig. 6

Experimental setup for storing sounds in LiNbO3 crystal. An electro-optic modulator provides the necessary acoustic sidebands on the reference beam to write the hologram. Several holograms are recorded by angle encoding the reference wave: M, mirrors; L, lenses; BS and PBS, beam splitters and polarizing beam splitters; λ/2, half-wave plate; EOM, electro-optic modulator.

Fig. 7
Fig. 7

Recognition of two complex sounds. Each channel on the oscilloscope monitors the diffracted light intensity from one of the two holograms. The two sounds, each lasting 0.3 s, are applied consecutively to the driver with a silence of 1.9 s inserted between them. The peaks are ~ 20 dB above the backgrounds. The rise time of the diffracted intensity is due to a low-pass filter in the detection system.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω = 3.52 L ( E I ρ A ) 1 / 2 ,
Δ ϕ = χ ( ω , A ) sin ( ω t ) .
H ( s ) = exp ( - Γ l / 2 1 + s τ ) ,
I out ( ω , A ) = I in [ exp ( - Γ l ) + 4 χ 2 ( ω , A ) sin 2 ( ω t + Γ l / 2 ω τ ) ] ,
K F ( x ) = Q K D ,
K F ( x ) = 3 E I / x 3 ,
x 0 = ( 3 E I Q K D ) 1 / 3 .
D ( f ) δ [ n ( f ) ] δ f = 1 b f             ( f min f f max ) ,
n ( f ) = 1 + ( N - 1 ) ln ( f ) - ln ( f min ) ln ( f max ) - ln ( f min ) ,
L n = L max exp [ - b ( n - 1 ) / 2 ]             1 n N ,
I out I in = exp ( - Γ l ) + 4 α 2 A 2 sin 2 ( ω t + Γ l / 2 ω τ ) .

Metrics