Abstract

We propose an N × N acousto-optic switch architecture capable of arbitrary signal fan-out with O(N logN) hardware complexity. We also investigate the impact of signal fan-out on loss and cross talk.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. O. Harris, A. VanderLugt, “Acousto-optic photonic switch,” Opt. Lett. 14, 1177–1179 (1989).
    [CrossRef] [PubMed]
  2. D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245–4256 (1991).
    [CrossRef] [PubMed]
  3. W. H. Beyer, Standard Mathematical Tables, 27th ed. (CRC Press, Boca Raton, Fla., 1984).
  4. B. E. Briley, Introduction to Telephone Switching (Addison-Wesley, Reading, Mass., 1983).
  5. A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).
  6. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
    [CrossRef]
  7. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
    [CrossRef]
  8. I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
    [CrossRef]
  9. G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in IEEE 1985 Ultrasonics Symposium Proceedings (Institute of Electrical and Electronics Engineers, New York, 1985), Vol. 1, pp. 391–397.

1991 (1)

1990 (1)

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

1989 (1)

1988 (1)

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

1977 (1)

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

1976 (1)

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

Banwell, T. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

Beyer, W. H.

W. H. Beyer, Standard Mathematical Tables, 27th ed. (CRC Press, Boca Raton, Fla., 1984).

Briley, B. E.

B. E. Briley, Introduction to Telephone Switching (Addison-Wesley, Reading, Mass., 1983).

Chang, I. C.

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

Cheng, S. S.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

Dias, A. R.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Elston, G.

G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in IEEE 1985 Ultrasonics Symposium Proceedings (Institute of Electrical and Electronics Engineers, New York, 1985), Vol. 1, pp. 391–397.

Goodman, J. W.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Harris, D. O.

Hecht, D. L.

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

Huang, P. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

Kalman, R. F.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Reith, L. A.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

Sawchuk, A. A.

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

Stephens, W. E.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

VanderLugt, A.

Appl. Opt. (1)

IEEE Trans. Sonics Ultrason. (2)

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977).
[CrossRef]

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976).
[CrossRef]

Opt. Eng. (2)

A. R. Dias, R. F. Kalman, J. W. Goodman, A. A. Sawchuk, “Fiber-optic crossbar switch with broadcast capability,” Opt. Eng. 27, 955–960 (1988).

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183–191 (1990).
[CrossRef]

Opt. Lett. (1)

Other (3)

G. Elston, “Intermodulation products in acoustooptic signal processing systems,” in IEEE 1985 Ultrasonics Symposium Proceedings (Institute of Electrical and Electronics Engineers, New York, 1985), Vol. 1, pp. 391–397.

W. H. Beyer, Standard Mathematical Tables, 27th ed. (CRC Press, Boca Raton, Fla., 1984).

B. E. Briley, Introduction to Telephone Switching (Addison-Wesley, Reading, Mass., 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Acousto-optic photonic switch architecture for arbitrary signal fan-out. The hardware complexity of this architecture approaches O(N log N).

Fig. 2
Fig. 2

Top view of the apparatus that was used in the two-tone diffraction efficiency and intermodulation experiments. Here, F is the focal length of the spherical lens, and Bragg incidence to the acousto-optic cell is implied.

Fig. 3
Fig. 3

Average measured diffraction efficiencies versus applied RF power for beams deflected to ports B and C by a two-tone RF signal with constituent frequencies of equal strength. Diffraction efficiency values are referenced to the maximum achievable diffraction efficiency for a monotone RF signal.

Fig. 4
Fig. 4

Average measured intermodulation levels versus applied RF power; these intermodulation beams appear at ports A and D and result from the applied RF signals that were used to collect the data in Fig. 3. Intermodulation levels are referenced to the maximum achievable diffraction efficiency for a monotone RF signal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N RF = int ( N 2 ) + i = 1 N int ( N i ) .
N RF ~ N ( 1 2 + i = 1 N 1 i ) ,
log e ( N ) = i = 1 1 i ( N - 1 N ) i .
N RF N ( 1 2 + log e N ) .
η = η J 1 ( Δ φ ) 2 .
I = η J 3 ( Δ φ ) 2 ,

Metrics