Abstract

Using a narrow-band tunable KrF excimer laser as a spontaneous vibrational Raman scattering source, we demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O2, N2, H2O, and H2) at all stoichiometries (fuel-lean to fuel-rich) of H2–air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5%, which are based on the relative standard deviations of single-pulse probability distributions. Optimal tuning of the narrow-band KrF excimer laser (248.623 nm) for the minimization of OH A2Σ−X2Π and O2B3Σu−X3Σg fluorescence interference is determined from fluorescence excitation spectra. In addition to the single-pulse N2 Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique is presented that matches the N2 Stokes Raman spectrum to theoretical spectra by using a single intermediate state frequency to account for near-resonance enhancement. Raman flame spectra in CH4–air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
    [Crossref]
  2. P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988).
    [Crossref]
  3. M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986).
    [Crossref] [PubMed]
  4. R. B. Miles, C. Cohen, J. Conners, P. Howard, S. Huang, E. Markovitz, G. Russell, “Velocity measurements by vibrational tagging and fluorescence probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
    [Crossref] [PubMed]
  5. L. R. Boedeker, “Velocity measurement by H2O photolysis and laser induced fluorescence of OH,” Opt. Lett. 14, 473–475 (1989).
    [Crossref] [PubMed]
  6. T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
    [Crossref]
  7. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
    [Crossref] [PubMed]
  8. A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].
  9. R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
    [Crossref]
  10. P. J. Hargis, “Trace detection of N2 by KrF laser excited spontaneous Raman spectroscopy,” Appl. Opt. 20, 149–152 (1981).
    [Crossref] [PubMed]
  11. J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
    [Crossref]
  12. G. Placzek, “Rayleigh-Streung und Raman Effekt,” in Hand-buch derRadiologie (Akademische Verlag, Leipzig, 1934), Heft 6, Teil 2, pp. 209–347[“The Rayleigh and Raman Scattering,” Lawrence Radiation Lab. Rep. UCRL-Trans-526 (L) (National Technical Information Service, Springfield, Va., 1962)].
  13. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  14. M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).
  15. M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.
  16. M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.
  17. A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
    [Crossref]
  18. Burner purchased from Research Technologies, P.O. Box 384, Pleasanton, Calif. 94566.
  19. Ultrapure n-butyl acetate (99 + %), Alfa Products, 152 Andover St., Danvers, Mass. 01923.
  20. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
    [Crossref] [PubMed]
  21. G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [Crossref]
  22. D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
    [Crossref]
  23. K. R. German, “Radiative and predissociative lifetimes of the V′ = 0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phvs. 63, 5252–5255 (1975).
    [Crossref]
  24. A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
    [Crossref]
  25. J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
    [Crossref]
  26. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
    [Crossref]
  27. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  28. R. W. Bilger, “Turbulent diffusion flames,” in Annual Review of Fluid Mechanics, J. L. Lumley, M. Van Dyke, H. L. Reed, eds. (Annual Reviews, Palo Alto, Calif., 1989), Vol. 21, pp. 101–135.
    [Crossref]
  29. R. S. Barlow, R. W. Dibble, R. P. Lucht, “Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames,” Opt. Lett. 14, 263–265 (1989).
    [Crossref] [PubMed]

1990 (2)

1989 (2)

1988 (3)

A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].

P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988).
[Crossref]

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
[Crossref] [PubMed]

1987 (2)

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[Crossref]

R. B. Miles, C. Cohen, J. Conners, P. Howard, S. Huang, E. Markovitz, G. Russell, “Velocity measurements by vibrational tagging and fluorescence probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

1986 (2)

M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
[Crossref]

M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986).
[Crossref] [PubMed]

1985 (1)

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

1982 (1)

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[Crossref]

1981 (1)

1978 (1)

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[Crossref]

1976 (1)

R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
[Crossref]

1975 (2)

D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[Crossref]

K. R. German, “Radiative and predissociative lifetimes of the V′ = 0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phvs. 63, 5252–5255 (1975).
[Crossref]

1962 (1)

G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[Crossref]

Andresen, P.

Asher, J. A.

M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).

Barlow, R. S.

Bath, A.

Beretta, F.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

Bilger, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[Crossref]

R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
[Crossref]

R. W. Bilger, “Turbulent diffusion flames,” in Annual Review of Fluid Mechanics, J. L. Lumley, M. Van Dyke, H. L. Reed, eds. (Annual Reviews, Palo Alto, Calif., 1989), Vol. 21, pp. 101–135.
[Crossref]

Bischel, W. K.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Black, G.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Boedeker, L. R.

Bowling, J. M.

Cheng, T. S.

Cincotti, V.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

Cohen, C.

Conners, J.

Creek, D. M.

D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[Crossref]

Crosswhite, H. M.

G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[Crossref]

D’Alessio, A.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

Dibble, R. W.

R. S. Barlow, R. W. Dibble, R. P. Lucht, “Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames,” Opt. Lett. 14, 263–265 (1989).
[Crossref] [PubMed]

P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[Crossref]

Diecke, G. H.

G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[Crossref]

Drake, M. C.

M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
[Crossref]

M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.

Eckbreth, A. C.

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[Crossref]

Fedorov, S. Yu.

A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].

German, K. R.

K. R. German, “Radiative and predissociative lifetimes of the V′ = 0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phvs. 63, 5252–5255 (1975).
[Crossref]

Goulard, R.

R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
[Crossref]

Gröger, W.

Hanson, R. K.

Hargis, P. J.

Howard, P.

Huang, S.

Inaba, H.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Kagawa, K.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Kobayashi, T.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Konishi, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Lapp, M.

M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
[Crossref]

M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.

M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).

M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.

Lee, M. P.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Lucht, R. P.

Lülf, H. W.

Magre, P.

P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988).
[Crossref]

Mallard, W. G.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[Crossref]

Malov, A. N.

A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].

Markovitz, E.

Masri, A. R.

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[Crossref]

Meijer, G.

Mellor, A. M.

R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
[Crossref]

Menna, P.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

Miles, R. B.

Miller, J. H.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[Crossref]

Nicholls, R. W.

D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[Crossref]

Ohtaka, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Paul, P. H.

Penney, C. M.

M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).

Penny, C. M.

M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.

Pitz, R. W.

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990).
[Crossref] [PubMed]

M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
[Crossref]

Placzek, G.

G. Placzek, “Rayleigh-Streung und Raman Effekt,” in Hand-buch derRadiologie (Akademische Verlag, Leipzig, 1934), Heft 6, Teil 2, pp. 209–347[“The Rayleigh and Raman Scattering,” Lawrence Radiation Lab. Rep. UCRL-Trans-526 (L) (National Technical Information Service, Springfield, Va., 1962)].

Russell, G.

Shirley, J. A.

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[Crossref]

Smyth, K. C.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[Crossref]

Taki, S.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

ter Meulen, J. J.

Ueda, M.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

Wehrmeyer, J. A.

AIAA J. (1)

M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[Crossref]

Combust. Flame (5)

P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988).
[Crossref]

A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978).
[Crossref]

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[Crossref]

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[Crossref]

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[Crossref]

Combust. Sci. Technol. (1)

R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976).
[Crossref]

Fiz. Goreniya Vzryva (1)

A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].

J. Chem. Phvs. (1)

K. R. German, “Radiative and predissociative lifetimes of the V′ = 0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phvs. 63, 5252–5255 (1975).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[Crossref]

Opt. Lett. (4)

Proc. R. Soc. London Ser. A (1)

D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[Crossref]

Other (10)

Burner purchased from Research Technologies, P.O. Box 384, Pleasanton, Calif. 94566.

Ultrapure n-butyl acetate (99 + %), Alfa Products, 152 Andover St., Danvers, Mass. 01923.

T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140.
[Crossref]

G. Placzek, “Rayleigh-Streung und Raman Effekt,” in Hand-buch derRadiologie (Akademische Verlag, Leipzig, 1934), Heft 6, Teil 2, pp. 209–347[“The Rayleigh and Raman Scattering,” Lawrence Radiation Lab. Rep. UCRL-Trans-526 (L) (National Technical Information Service, Springfield, Va., 1962)].

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).

M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.

M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

R. W. Bilger, “Turbulent diffusion flames,” in Annual Review of Fluid Mechanics, J. L. Lumley, M. Van Dyke, H. L. Reed, eds. (Annual Reviews, Palo Alto, Calif., 1989), Vol. 21, pp. 101–135.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the narrow-band laser UV Raman system.

Fig. 2
Fig. 2

OH energy level diagram showing 248-nm excitation (V″ = 0 → V′ = 3).

Fig. 3
Fig. 3

O2 energy-level diagram showing 248-nm excitation (V″ = 6, 7 → V′ = 0, 2).

Fig. 4
Fig. 4

OH excitation spectrum. The spectrometer is at 271.85 nm with a 1.4-nm bandpass. The arrow shows the wavelength of the laser (248.623 nm) for the Raman flame spectra. The labeled lines are for the (3 ← 0) band of the A2Σ−X2Π transition.

Fig. 5
Fig. 5

O2 excitation spectrum. The spectrometer is at 257.60 nm with a 1.65-nm bandpass. The arrow shows the wavelength of a laser (248.623 nm) for Raman flame spectra. The labeled lines are the (2 ← 7) band of the B3ΣuX3Σg transition.

Fig. 6
Fig. 6

UV Raman spectra for room air and a lean H2–air flame.

Fig. 7
Fig. 7

UV Raman spectra for stoichiometric and rich H2–air flames.

Fig. 8
Fig. 8

UV Raman spectra for lean and rich CH4–air flames.

Fig. 9
Fig. 9

Theoretical and experimental spectra for the N2 Stokes Q branch. Experimental data are from Fig. 7 for a stoichiometric flame. The thermocouple measured temperature is 1570 ± 50 K.

Fig. 10
Fig. 10

Probability density functions for N2 concentration measurements. One thousand single-shot measurements are taken in (a) room air and (b) a H2–air stoichiometric flame.

Fig. 11
Fig. 11

Probability density functions for (a) anti-Stokes signal and (b) temperature measurements. One thousand single-shot measurements are taken in a H2–air stoichiometric flame.

Tables (1)

Tables Icon

Table I Single—Shot Measurement Relative Standard Deviations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( V , J ) g ( 2 J + 1 ) ( V + 1 ) ν S 4 A Δ J = 0 , J Q rot Q vib exp { [ G o ( V ) F v ( J ) h c ] k T } .
N s = n E η L η s η d Ω L σ Z Z Q vib f ( T ) / ( h ν s ) .
T = T v ln ( N S N AS ) + 3 ln ( ν AS ν S ) + ln ( K ) ,
σ N = 1 N ,
σ T T T T v ( 1 N S + 1 N AS ) 1 / 2 .

Metrics