Abstract

An algorithm for the automated analysis of lidar cloud returns has been developed as part of the Experimental Cloud Lidar Pilot Study program. This automated method determines the cloud-base and cloud-top heights as well as the altitude of the maximum return signal. A large body of cloud data that were obtained at 532 and 1064 nm with a Nd:YAG lidar have been evaluated and it has been found that the algorithm can handle the wide range of complex cloud situations encountered. The need for a more careful definition of the cloud-base height and cloud-top height is described and discussed in relation to the existing measurements with rotating beam and laser ceilometers.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Experimental cloud lidar pilot study (ECLIPS),” Report of the World Climate Research Program/Commonwealth Scientific and Industrial Research Organization (WCRP/CSIRO), Cloud Base Measurement Workshop, (Commonwealth Scientific and Industrial Research Organisation, Division of Atmospheric Research, Mordialloc, Victoria, Australia, 29 February–3 March 1988).
  2. J. Kurylo, S. Solomon, “Network for the Detection of Stratospheric Change (NDSC),” issued by NASA Upper Atmospheric Program and NOAA Climate and Global Change Program, (National Aeronautics and Space Administration/National Oceanic and Atmospheric Association, Washington, D.C., January1990).
  3. “Atmospheric Radiation Measurement Program Plan (ARM),” Office of Energy Research, Office of Health and Environment Research, Atmospheric and Climate Research Division (U.S. Department of Energy, Washington, D.C., February1990).
  4. F. P. Bretherton, V. Suomi, “First International Satellite Cloud Climatology Project Regional Experiment (FIRE) Research Plan” (National Climatic Program Office, Rockville, Md., 1983).
  5. Ch. Werner, H. Herrmann, J. Streicher, “Cirrus-experiment ICE-1987—mikrolidar Messungen,” DFVLR-Mitteilung 88–17 (DFVLR, Oberfaffenhofen, Germany, 1988).
  6. C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
    [CrossRef]
  7. C. M. R. Platt, “On the bispectral method for cloud parameter determination from satellite VISSR data: separating broken and semitransparent clouds,” J. Clim. Appl. Meteorol. 12, 429–439 (1983).
  8. W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
    [CrossRef]
  9. A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
    [CrossRef]
  10. J. A. Coakley, R. Davies, “The effect of cloud sides on reflected solar radiation as deduced from satellite observations,” J. Atmos. Sci. 43, 1025–1035 (1986).
    [CrossRef]
  11. D. M. O’Brien, “Size distributions of clouds in real time from satellite imagery,” Int. J. Remote Sensing 8, 817–837 (1987).
    [CrossRef]
  12. C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
    [CrossRef]
  13. T. Nakajima, M. D. King, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory,” J. Atmos. Sci. 47, 1878–1893 (1990).
    [CrossRef]
  14. Rotating Beam Ceilometer System Instruction Manual: WB 1082 US COMMESSA-DC, Engineering Div. (U.S. Department of Commerce, Silver Spring, Md., 1967).
  15. “Surface Observations,” in Federal Meteorological Handbook No. 1 (U.S. Government Printing Office, Washington D.C., 1971).
  16. W. E. Eggert, “Approach visibility studies at Newark,” Final report AMB Project D-1-902 (Bureau of Research and Federal Aviation Agency, Washington, D.C., 1960).
  17. E. Y. Moroz, G. A. Travers, “Measurement of cloud height: evaluation of ranging and triangulation techniques for determination of cloud height at airfields,” U.S. Air Force Cambridge Research Laboratories Meteorological Laboratory, Proj. 6670 (U.S. Air Force, Bedford, Mass., 1975).
  18. W. L. Eberhard, “Cloud signals from lidar and rotating beam ceilometers compared with pilot ceiling,” J. Atmos. Oceanic Technol. 3, 499–512 (1987).
    [CrossRef]
  19. “Analysis of cloud sensors: A manual height measurement system,” NOAA Technical Memorandum NWS T& EL 10 (U. S. Department of Commerce, National Oceanic and Atmospheric Association/National Weather Service, Washington, D.C., 1971).
  20. C. E. Robinson, D. J. McKay, “A practical cloud algorithm for automatic weather stations,” Instruments and Observing Report No. 35, Fourth World Meteorological Organisation Technical Conference on Instruments and Methods of Observation, WMO/TD 303 (World Meteorological Organisation, Geneva, 1989).
  21. A. I. Carswell, “Laser measurements in clouds,” in Clouds: Their Formation, Optical Properties and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), p. 381.
  22. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
    [CrossRef] [PubMed]
  23. J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
    [CrossRef]

1990

T. Nakajima, M. D. King, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory,” J. Atmos. Sci. 47, 1878–1893 (1990).
[CrossRef]

1988

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

1987

D. M. O’Brien, “Size distributions of clouds in real time from satellite imagery,” Int. J. Remote Sensing 8, 817–837 (1987).
[CrossRef]

W. L. Eberhard, “Cloud signals from lidar and rotating beam ceilometers compared with pilot ceiling,” J. Atmos. Oceanic Technol. 3, 499–512 (1987).
[CrossRef]

1986

J. A. Coakley, R. Davies, “The effect of cloud sides on reflected solar radiation as deduced from satellite observations,” J. Atmos. Sci. 43, 1025–1035 (1986).
[CrossRef]

1985

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

1983

C. M. R. Platt, “On the bispectral method for cloud parameter determination from satellite VISSR data: separating broken and semitransparent clouds,” J. Clim. Appl. Meteorol. 12, 429–439 (1983).

J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

1980

C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
[CrossRef]

1973

Abshire, N. L.

C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
[CrossRef]

Arking, A.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

Bretherton, F. P.

F. P. Bretherton, V. Suomi, “First International Satellite Cloud Climatology Project Regional Experiment (FIRE) Research Plan” (National Climatic Program Office, Rockville, Md., 1983).

Carswell, A. I.

S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
[CrossRef] [PubMed]

A. I. Carswell, “Laser measurements in clouds,” in Clouds: Their Formation, Optical Properties and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), p. 381.

Childs, J. D.

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

Coakley, J. A.

J. A. Coakley, R. Davies, “The effect of cloud sides on reflected solar radiation as deduced from satellite observations,” J. Atmos. Sci. 43, 1025–1035 (1986).
[CrossRef]

Curran, R. J.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Dalu, G.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Davies, R.

J. A. Coakley, R. Davies, “The effect of cloud sides on reflected solar radiation as deduced from satellite observations,” J. Atmos. Sci. 43, 1025–1035 (1986).
[CrossRef]

Desbois, M.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Eberhard, W. L.

W. L. Eberhard, “Cloud signals from lidar and rotating beam ceilometers compared with pilot ceiling,” J. Atmos. Oceanic Technol. 3, 499–512 (1987).
[CrossRef]

Eggert, W. E.

W. E. Eggert, “Approach visibility studies at Newark,” Final report AMB Project D-1-902 (Bureau of Research and Federal Aviation Agency, Washington, D.C., 1960).

Fraser, R. S.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Hanseu, M. Z.

J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Harrison, E.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Herrmann, H.

Ch. Werner, H. Herrmann, J. Streicher, “Cirrus-experiment ICE-1987—mikrolidar Messungen,” DFVLR-Mitteilung 88–17 (DFVLR, Oberfaffenhofen, Germany, 1988).

King, M. D.

T. Nakajima, M. D. King, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory,” J. Atmos. Sci. 47, 1878–1893 (1990).
[CrossRef]

Kinsella, E.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Kurylo, J.

J. Kurylo, S. Solomon, “Network for the Detection of Stratospheric Change (NDSC),” issued by NASA Upper Atmospheric Program and NOAA Climate and Global Change Program, (National Aeronautics and Space Administration/National Oceanic and Atmospheric Association, Washington, D.C., January1990).

McKay, D. J.

C. E. Robinson, D. J. McKay, “A practical cloud algorithm for automatic weather stations,” Instruments and Observing Report No. 35, Fourth World Meteorological Organisation Technical Conference on Instruments and Methods of Observation, WMO/TD 303 (World Meteorological Organisation, Geneva, 1989).

Minnis, P.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Moroz, E. Y.

E. Y. Moroz, G. A. Travers, “Measurement of cloud height: evaluation of ranging and triangulation techniques for determination of cloud height at airfields,” U.S. Air Force Cambridge Research Laboratories Meteorological Laboratory, Proj. 6670 (U.S. Air Force, Bedford, Mass., 1975).

Mosher, F.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Nakajima, T.

T. Nakajima, M. D. King, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory,” J. Atmos. Sci. 47, 1878–1893 (1990).
[CrossRef]

O’Brien, D. M.

D. M. O’Brien, “Size distributions of clouds in real time from satellite imagery,” Int. J. Remote Sensing 8, 817–837 (1987).
[CrossRef]

Pal, S. R.

Platt, C. M. R.

C. M. R. Platt, “On the bispectral method for cloud parameter determination from satellite VISSR data: separating broken and semitransparent clouds,” J. Clim. Appl. Meteorol. 12, 429–439 (1983).

C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
[CrossRef]

Prabhakara, C.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Reynolds, D. W.

C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
[CrossRef]

Robinson, C. E.

C. E. Robinson, D. J. McKay, “A practical cloud algorithm for automatic weather stations,” Instruments and Observing Report No. 35, Fourth World Meteorological Organisation Technical Conference on Instruments and Methods of Observation, WMO/TD 303 (World Meteorological Organisation, Geneva, 1989).

Rossow, W. B.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Ruprecht, E.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Seze, G.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Simmer, C.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Simpson, J.

J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Smith, E.

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

Solomon, S.

J. Kurylo, S. Solomon, “Network for the Detection of Stratospheric Change (NDSC),” issued by NASA Upper Atmospheric Program and NOAA Climate and Global Change Program, (National Aeronautics and Space Administration/National Oceanic and Atmospheric Association, Washington, D.C., January1990).

Spinhirne, J. D.

J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

Streicher, J.

Ch. Werner, H. Herrmann, J. Streicher, “Cirrus-experiment ICE-1987—mikrolidar Messungen,” DFVLR-Mitteilung 88–17 (DFVLR, Oberfaffenhofen, Germany, 1988).

Styles, T.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Suomi, V.

F. P. Bretherton, V. Suomi, “First International Satellite Cloud Climatology Project Regional Experiment (FIRE) Research Plan” (National Climatic Program Office, Rockville, Md., 1983).

Travers, G. A.

E. Y. Moroz, G. A. Travers, “Measurement of cloud height: evaluation of ranging and triangulation techniques for determination of cloud height at airfields,” U.S. Air Force Cambridge Research Laboratories Meteorological Laboratory, Proj. 6670 (U.S. Air Force, Bedford, Mass., 1975).

Werner, Ch.

Ch. Werner, H. Herrmann, J. Streicher, “Cirrus-experiment ICE-1987—mikrolidar Messungen,” DFVLR-Mitteilung 88–17 (DFVLR, Oberfaffenhofen, Germany, 1988).

Wu, Man-Li C.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Appl. Opt.

Int. J. Remote Sensing

D. M. O’Brien, “Size distributions of clouds in real time from satellite imagery,” Int. J. Remote Sensing 8, 817–837 (1987).
[CrossRef]

J. Atmos. Oceanic Technol.

W. L. Eberhard, “Cloud signals from lidar and rotating beam ceilometers compared with pilot ceiling,” J. Atmos. Oceanic Technol. 3, 499–512 (1987).
[CrossRef]

J. Atmos. Sci.

T. Nakajima, M. D. King, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory,” J. Atmos. Sci. 47, 1878–1893 (1990).
[CrossRef]

J. A. Coakley, R. Davies, “The effect of cloud sides on reflected solar radiation as deduced from satellite observations,” J. Atmos. Sci. 43, 1025–1035 (1986).
[CrossRef]

J. Clim. Appl. Meteorol.

C. M. R. Platt, “On the bispectral method for cloud parameter determination from satellite VISSR data: separating broken and semitransparent clouds,” J. Clim. Appl. Meteorol. 12, 429–439 (1983).

W. B. Rossow, F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, E. Smith, “ISCCP cloud algorithm intercomparison,” J. Clim. Appl. Meteorol. 24, 877–903 (1985).
[CrossRef]

A. Arking, J. D. Childs, “Retrieval of cloud cover parameters from multispectral satellite images,” J. Clim. Appl. Meteorol. 24, 322–333 (1985).
[CrossRef]

J. D. Spinhirne, M. Z. Hanseu, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Clim. Appl. Meteorol. 22, 1319–1331 (1983).
[CrossRef]

J. Meteorol.

C. Prabhakara, R. S. Fraser, G. Dalu, Man-Li C. Wu, R. J. Curran, T. Styles, “Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS,” J. Meteorol. 27, 379–399 (1988).
[CrossRef]

Mon. Weather Rev.

C. M. R. Platt, D. W. Reynolds, N. L. Abshire, “Satellite and lidar observations of the albedo, emittance and optical depth of cirrus compared to calculations,” Mon. Weather Rev. 108, 195–204 (1980).
[CrossRef]

Other

“Experimental cloud lidar pilot study (ECLIPS),” Report of the World Climate Research Program/Commonwealth Scientific and Industrial Research Organization (WCRP/CSIRO), Cloud Base Measurement Workshop, (Commonwealth Scientific and Industrial Research Organisation, Division of Atmospheric Research, Mordialloc, Victoria, Australia, 29 February–3 March 1988).

J. Kurylo, S. Solomon, “Network for the Detection of Stratospheric Change (NDSC),” issued by NASA Upper Atmospheric Program and NOAA Climate and Global Change Program, (National Aeronautics and Space Administration/National Oceanic and Atmospheric Association, Washington, D.C., January1990).

“Atmospheric Radiation Measurement Program Plan (ARM),” Office of Energy Research, Office of Health and Environment Research, Atmospheric and Climate Research Division (U.S. Department of Energy, Washington, D.C., February1990).

F. P. Bretherton, V. Suomi, “First International Satellite Cloud Climatology Project Regional Experiment (FIRE) Research Plan” (National Climatic Program Office, Rockville, Md., 1983).

Ch. Werner, H. Herrmann, J. Streicher, “Cirrus-experiment ICE-1987—mikrolidar Messungen,” DFVLR-Mitteilung 88–17 (DFVLR, Oberfaffenhofen, Germany, 1988).

Rotating Beam Ceilometer System Instruction Manual: WB 1082 US COMMESSA-DC, Engineering Div. (U.S. Department of Commerce, Silver Spring, Md., 1967).

“Surface Observations,” in Federal Meteorological Handbook No. 1 (U.S. Government Printing Office, Washington D.C., 1971).

W. E. Eggert, “Approach visibility studies at Newark,” Final report AMB Project D-1-902 (Bureau of Research and Federal Aviation Agency, Washington, D.C., 1960).

E. Y. Moroz, G. A. Travers, “Measurement of cloud height: evaluation of ranging and triangulation techniques for determination of cloud height at airfields,” U.S. Air Force Cambridge Research Laboratories Meteorological Laboratory, Proj. 6670 (U.S. Air Force, Bedford, Mass., 1975).

“Analysis of cloud sensors: A manual height measurement system,” NOAA Technical Memorandum NWS T& EL 10 (U. S. Department of Commerce, National Oceanic and Atmospheric Association/National Weather Service, Washington, D.C., 1971).

C. E. Robinson, D. J. McKay, “A practical cloud algorithm for automatic weather stations,” Instruments and Observing Report No. 35, Fourth World Meteorological Organisation Technical Conference on Instruments and Methods of Observation, WMO/TD 303 (World Meteorological Organisation, Geneva, 1989).

A. I. Carswell, “Laser measurements in clouds,” in Clouds: Their Formation, Optical Properties and Effects, P. V. Hobbs, A. Deepak, eds. (Academic, New York, 1981), p. 381.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a, Example of a lidar backscatter signal P(r). The transceiver overlap is at r0. rb and rp represent the altitude of the minimum signal at the cloud base and the maximum (peak) return signal, respectively, b, Slope dP/dr of the backscatter signal from Fig. 1a shows zero crossings at transceiver overlap r0, cloud base rb, and cloud peak rp.

Fig. 2
Fig. 2

Sample backscatter signal showing multiple cloud layers. The solid horizontal lines indicate local minima in P(r) and are labeled rb1, rb2, etc. The dashed lines indicate local maxima, labeled rp1, rp2, etc. The large peaks in P(r) at r0 and rp1 are off scale and not shown in this figure.

Fig. 3
Fig. 3

Apparent cloud top rt has been retrieved by the algorithm for the data of Fig. 2, and rb, rp, and rt are marked for the three cloud layers.

Fig. 4
Fig. 4

Algorithm registers only two cloud layers. All peaks above rb2 are identified as belonging to one single cloud layer.

Fig. 5
Fig. 5

Gray-scale plot of P(r) for a multiple cloud layer situation.

Fig. 6
Fig. 6

Output of the cloud-base algorithm for the measurement series of Fig. 5. For clarity only every fifth set of points rb, rp, and rt is plotted.

Fig. 7
Fig. 7

Averaged cloud-base and cloud-top heights for the example of Fig. 5. The dashed lines indicate the boundaries of the time-averaging intervals.

Fig. 8
Fig. 8

Separation of the altitudes of cloud base and cloud peak (rprb) versus cloud-base height rb, which is determined by using the cloud-base algorithm in a variety of cloud situations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = C β ( r ) r 2 exp [ 2 0 r σ ( r ) d r ] ,

Metrics