Abstract

This paper formulates a theory of noncontact point thermal sensing by fiber-optic radiometry. This theory covers the field of mid- and far-infrared fibers that are suitable for low-temperature radiometry. However, new problems arise in the infrared range, the emission of thermal radiation from the fiber itself due to infrared absorption introduces perturbations into the radiometry, and this must be taken into consideration. The model presented is based on three-dimensional optical geometry of bounded and tunneling skew rays and yields an analytical expression for the inclination and the skewness angle distribution of the guided power collected by the fiber from various layers of a thermal body. The effective field of view, the surface resolution, and the temperature resolution of fiber-optic radiometry are discussed. Thermal sensing by direct coupling is shown to have an advantage over the coupling of a focusing lens located behind the fiber tip. A formulation of fiber emissivity is presented that quantifies the suppression of radiometric perturbations in fiber-optic thermal sensing. Bulk and surface absorption in the fiber core and cladding absorption are all taken into consideration deriving emissivity. Combining the transmissivity and emissivity of the fiber, we propose a measurable criterion, a figure of merit, for fiber-optic radiometry.

© 1992 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Mordon, A. H. Cornil, J. M. Brunetaud, “Temperature measurement with zirconium fluoride glass fiber,” Appl. Opt. 26, 607–609 (1987).
    [CrossRef] [PubMed]
  2. A. Zur, A. Katzir, “Infrared fibers for low temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
    [CrossRef]
  3. V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
    [CrossRef]
  4. L. M. Hobrock, J. D. Sneed, “Radiometric applications of infrared fibers,” in Advances in Infrared Fibers, L. G. De-Shazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.320, 140–144 (1982).
  5. M. Shimizu, S. Kachi, “Low temperature radiometer using infrared fiber,” presented at the Third Sensor Symposium, Tsukaba, Japan, 1983.
  6. E. Sinofsky, M. G. Dumont, “Temperature measurement using silica and fluoride based optical fibers for biological applications,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 131–136 (1988).
  7. R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry, and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, V. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 206–215 (1990).
  8. A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
    [CrossRef]
  9. A. Zur, A. Katzir, “Theory of fiber optic radiometry, emissivity of fibers, and distributed thermal sensors,” Appl. Opt. 30, 660–673 (1991).
    [CrossRef] [PubMed]
  10. D. A. Christensen, “Thermal dosimetry and temperature measurements,” Cancer Res. 39, 2325–2331 (1979).
    [PubMed]
  11. C. T. Cetas, W. Connor, “Thermometry considerations in localized hyperthermia,” Med. Phys. 5, 79–91 (1978).
    [CrossRef] [PubMed]
  12. A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
    [CrossRef]
  13. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Secs. 35-13, 7-3.
  14. A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

1991

1989

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

1988

1987

1986

A. Zur, A. Katzir, “Infrared fibers for low temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

1984

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

1979

D. A. Christensen, “Thermal dosimetry and temperature measurements,” Cancer Res. 39, 2325–2331 (1979).
[PubMed]

1978

C. T. Cetas, W. Connor, “Thermometry considerations in localized hyperthermia,” Med. Phys. 5, 79–91 (1978).
[CrossRef] [PubMed]

Artjushenko, V. G.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Asfour, Y.

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

Barkay, N.

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Bowman, H. F.

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

Brunetaud, J. M.

Burger, R. J.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry, and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, V. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 206–215 (1990).

Cetas, C. T.

C. T. Cetas, W. Connor, “Thermometry considerations in localized hyperthermia,” Med. Phys. 5, 79–91 (1978).
[CrossRef] [PubMed]

Christensen, D. A.

D. A. Christensen, “Thermal dosimetry and temperature measurements,” Cancer Res. 39, 2325–2331 (1979).
[PubMed]

Connor, W.

C. T. Cetas, W. Connor, “Thermometry considerations in localized hyperthermia,” Med. Phys. 5, 79–91 (1978).
[CrossRef] [PubMed]

Cornil, A. H.

Dumont, M. G.

E. Sinofsky, M. G. Dumont, “Temperature measurement using silica and fluoride based optical fibers for biological applications,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 131–136 (1988).

Greenberg, D. A.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry, and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, V. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 206–215 (1990).

Hobrock, L. M.

L. M. Hobrock, J. D. Sneed, “Radiometric applications of infrared fibers,” in Advances in Infrared Fibers, L. G. De-Shazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.320, 140–144 (1982).

Kachi, S.

M. Shimizu, S. Kachi, “Low temperature radiometer using infrared fiber,” presented at the Third Sensor Symposium, Tsukaba, Japan, 1983.

Katzir, A.

A. Zur, A. Katzir, “Theory of fiber optic radiometry, emissivity of fibers, and distributed thermal sensors,” Appl. Opt. 30, 660–673 (1991).
[CrossRef] [PubMed]

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
[CrossRef]

A. Zur, A. Katzir, “Infrared fibers for low temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Kirkitelos, P.

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry, and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, V. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 206–215 (1990).

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Secs. 35-13, 7-3.

Masychev, V. J.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Mordon, S. R.

Moser, F.

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Sa’ar, A.

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
[CrossRef]

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Shimizu, M.

M. Shimizu, S. Kachi, “Low temperature radiometer using infrared fiber,” presented at the Third Sensor Symposium, Tsukaba, Japan, 1983.

Shnitzer, I.

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

Sinofsky, E.

E. Sinofsky, M. G. Dumont, “Temperature measurement using silica and fluoride based optical fibers for biological applications,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 131–136 (1988).

Sneed, J. D.

L. M. Hobrock, J. D. Sneed, “Radiometric applications of infrared fibers,” in Advances in Infrared Fibers, L. G. De-Shazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.320, 140–144 (1982).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Secs. 35-13, 7-3.

Sysoev, V. K.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Valeri, C. R.

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

Voitsekhovsky, V. V.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Zubov, J. V.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

Zur, A.

A. Zur, A. Katzir, “Theory of fiber optic radiometry, emissivity of fibers, and distributed thermal sensors,” Appl. Opt. 30, 660–673 (1991).
[CrossRef] [PubMed]

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

A. Zur, A. Katzir, “Infrared fibers for low temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Zur, A. Katzir, “Infrared fibers for low temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

Cancer Res.

D. A. Christensen, “Thermal dosimetry and temperature measurements,” Cancer Res. 39, 2325–2331 (1979).
[PubMed]

Electron. Lett.

V. G. Artjushenko, V. V. Voitsekhovsky, V. J. Masychev, J. V. Zubov, V. K. Sysoev, “Fiberoptic device for simultaneous laser power transmission and temperature measurement of irradiated object,” Electron. Lett. 20, 983–984 (1984).
[CrossRef]

IEEE Trans. Biomed Eng.

A. Katzir, H. F. Bowman, Y. Asfour, A. Zur, C. R. Valeri, “Infrared fibers for radiometer thermometry in hypothermia and hyperthermia treatment,” IEEE Trans. Biomed Eng. 6, 634–637 (1989).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

C. T. Cetas, W. Connor, “Thermometry considerations in localized hyperthermia,” Med. Phys. 5, 79–91 (1978).
[CrossRef] [PubMed]

Other

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Secs. 35-13, 7-3.

A. Sa’ar, N. Barkay, F. Moser, I. Shnitzer, A. Katzir, “Optical and mechanical properties of silver halide fibers,” in Infrared Optical Materials and Fibers V, P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.843, 98–104 (1987).

L. M. Hobrock, J. D. Sneed, “Radiometric applications of infrared fibers,” in Advances in Infrared Fibers, L. G. De-Shazer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.320, 140–144 (1982).

M. Shimizu, S. Kachi, “Low temperature radiometer using infrared fiber,” presented at the Third Sensor Symposium, Tsukaba, Japan, 1983.

E. Sinofsky, M. G. Dumont, “Temperature measurement using silica and fluoride based optical fibers for biological applications,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 131–136 (1988).

R. J. Burger, D. A. Greenberg, P. Kirkitelos, “Radiometry, thermometry, and minimum resolvable temperature with IR fiber optics,” in Infrared Fiber Optics II, V. P. Klocek, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 206–215 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics