Abstract

An open-loop phase-modulated fiber optic gyroscope with a wide dynamic range and linear scale factor is described. The optical Sagnac phase shift is transposed into an electrical phase shift by introducing two phase sensitive detectors and two electronic amplitude modulators with independent carrier frequency from the optical phase modulation. Preliminary experiments show good linearity over a wide dynamic range up to 1000°/s and verifies the theoretical prediction.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, “Fiber-Optics Rotation Sensing with Low Drift,” Opt. Lett. 5, 173–175 (1980).
    [CrossRef] [PubMed]
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-Single-Mode Fiber-Optic Gyroscope with Long-Term Stability,” Opt. Lett. 6, 502–504 (1981).
    [CrossRef] [PubMed]
  3. R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefevre, H. J. Shaw, “Source Statistics and the Kerr Effect in Fiber-Optic Gyroscopes,” Opt. Lett. 7, 563–565 (1982).
    [CrossRef] [PubMed]
  4. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” IEEE/OSA J. Lightwave Technol. LT-2, 91–107 (1984).
    [CrossRef]
  5. R. F. Cahill, E. Udd, “Solid-State Phase-Nulling Optical Gyro,” Appl. Opt. 19, 3054–3056 (1980).
    [CrossRef] [PubMed]
  6. J. L. Davis, S. Ezekiel, “Closed-Loop, Low-Noise Fiber-Optic Rotation Sensor,” Opt. Lett. 6, 505–507 (1981).
    [CrossRef] [PubMed]
  7. D. Eberhard, E. Voges, “Fiber Gyroscope with Phase-Modulated Single-Sideband Detection,” Opt. Lett. 9, 22–24 (1984).
    [CrossRef] [PubMed]
  8. K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
    [CrossRef]
  9. B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378–380 (1984).
    [CrossRef] [PubMed]
  10. B. I. Bleaney, B. Bleaney, Electricity and Magnetism (Oxford U.P., London, 1963), pp. 213–222.
  11. D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
    [CrossRef]

1984 (4)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” IEEE/OSA J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

D. Eberhard, E. Voges, “Fiber Gyroscope with Phase-Modulated Single-Sideband Detection,” Opt. Lett. 9, 22–24 (1984).
[CrossRef] [PubMed]

B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378–380 (1984).
[CrossRef] [PubMed]

D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
[CrossRef]

1983 (1)

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

1982 (1)

1981 (2)

1980 (2)

Bergh, R. A.

Bleaney, B.

B. I. Bleaney, B. Bleaney, Electricity and Magnetism (Oxford U.P., London, 1963), pp. 213–222.

Bleaney, B. I.

B. I. Bleaney, B. Bleaney, Electricity and Magnetism (Oxford U.P., London, 1963), pp. 213–222.

Bohm, K.

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

Cahill, R. F.

Culshaw, B.

Cutler, C. C.

Davis, J. L.

Eberhard, D.

Ezekiel, S.

Jackson, D. A.

D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
[CrossRef]

Kersey, A. D.

D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
[CrossRef]

Kim, B. Y.

Lefevre, H. C.

Lewin, A. C.

D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
[CrossRef]

Marten, P.

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

Petermann, K.

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

Shaw, H. J.

Udd, E.

Ulrich, R.

Voges, E.

Weidel, E.

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

K. Bohm, P. Marten, E. Weidel, K. Petermann, “Direct Rotation-rate Detection with a Fibre-optic Gyro by using Digital Data Processing,” Electron. Lett. 19, 997–999 (1983).
[CrossRef]

D. A. Jackson, A. D. Kersey, A. C. Lewin, “Fibre Gyroscope with Passive Quadrature Detection,” Electron. Lett. 20, 399–401 (1984).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” IEEE/OSA J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

Opt. Lett. (6)

Other (1)

B. I. Bleaney, B. Bleaney, Electricity and Magnetism (Oxford U.P., London, 1963), pp. 213–222.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the open-loop phase-modulated fiber optic gyroscope with a wide dynamic range and linear scale factor. Two phase sensitive detectors, two electronic amplitude modulators, and an analog adder are introduced to transpose the optical Sagnac phase shift into the electrical phase shift of an electrical signal.

Fig. 2
Fig. 2

Basic configuration of the electric circuits introduced into our experiment: (a) electric circuit of a phase shifter and (b) electric circuit of an analog adder.

Fig. 3
Fig. 3

Waveforms of output signals: upper traces, reference signals; lower traces, output signals; the time scale is 100 ns/div and the voltage scale is 5 V/div. The phase offset of the output signal when rotation was stopped was caused by the conditions of the electric circuit used in our experiment.

Fig. 4
Fig. 4

Measured phase shift in the output signal induced by rotation of the gyroscope.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ( ϕ r , t ) = 1 2 ( E 1 2 + E 2 2 ) + E 1 E 2 J 0 ( ξ ) cos ϕ r + 2 E 1 E 2 j = 1 ( 1 ) j J 2 j ( ξ ) cos ( 2 j · 2 π f m t ) · cos ϕ r + 2 E 1 E 2 j = 1 ( 1 ) j + 1 J 2 j 1 ( ξ ) sin [ ( 2 j 1 ) 2 π f m t ] · sin ϕ r ,
ξ = 2 b sin ( π f m τ ) = 2 b sin ( π f m n l c ) .
V f m = C 1 E 1 E 2 J 1 ( ξ ) sin ϕ r = A 1 sin ϕ r , V 2 f m = C 2 E 1 E 2 J 2 ( ξ ) cos ϕ r = A 2 cos ϕ r .
V = V f m · cos 2 π f c t + V 2 f m sin 2 π f c t = A 1 sin ϕ r cos 2 π f c t + A 2 cos ϕ r sin 2 π f c t = A 1 2 sin 2 ϕ r + A 2 2 cos 2 ϕ r · sin ( 2 π f c t + ϕ ) ,
ϕ = tan 1 ( A 1 A 2 tan ϕ r ) .
V = A sin ( 2 π f c t + ϕ r ) .
V 0 = 1 i 2 π f c C R 2 1 + i 2 π f c C R 2 · V i .
V 0 = R 4 R 3 ( V 1 + V 2 ) .

Metrics