Abstract

The use of a novel modeless laser as the broadband source in multiplex CARS thermometry, by reducing the laser noise on the CARS spectra, is shown to give a precision of ~1% in single-shot temperature measurements in nitrogen at 1200K.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
    [CrossRef]
  2. A. C. EckbrethLaser Diagnostics for Combustion, Temperature and Species (Abacus, Cambridge, MA1988).
  3. D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Nonlinear Spectroscopy, R. E. Hester, Ed. (Wiley, New York, 1988).
  4. D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907–913 (1985).
    [CrossRef] [PubMed]
  5. M. Pealat, P. Bourchardy, M. Lefebvre, J.-P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef] [PubMed]
  6. N. K. Dutta, “Two-Photon Resonant Four-Wave Mixing with Non-Monochromatic Waves,” J. Phys. B 13, 411–426 (1980).
    [CrossRef]
  7. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effect of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223–225 (1984).
    [CrossRef] [PubMed]
  8. R. J. Hall, D. A. Greenhalgh, “Noise Properties of Single-Pulse Coherent Anti-Stokes Raman Spectroscopy with Multimode Pump Sources,” J. Opt. Soc. Am. B 3, 1637–1641 (1986).
    [CrossRef]
  9. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parameswaran, “Precision of Multiplex CARS Temperatures Using Both Single-Mode and Multimode Pump Lasers,” Appl. Opt. 26, 99–110 (1987).
    [CrossRef] [PubMed]
  10. S. A. Burton, J. M. Garneau, “Effect of Pump Laser Linewidth on Noise in Single-Pulse Coherent Anti-Stokes Raman Spectroscopy Temperature Measurements,” Opt. Lett. 12, 486–488 (1987).
    [CrossRef]
  11. S. Kroll, M. Alden, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl. Opt. 26, 1068–1073 (1987).
    [CrossRef] [PubMed]
  12. S. Kroll, D. Sandell, “Influence of Laser-Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband Coherent Anti-Stokes Raman Scattering Thermometry,” J. Opt. Soc. Am. B 5, 1910–1926 (1988).
    [CrossRef]
  13. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-Shot Spectral Measurements and Mode Correlations in a Multimode Pulsed Dye Laser,” J. Opt. Soc. Am. B 1, 150–154 (1984).
    [CrossRef]
  14. Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal Smoothing of Multimode Dye Laser Pulses,” Opt. Lett. 12, 416–418 (1987).
    [CrossRef] [PubMed]
  15. A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Applications of CARS in Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
    [CrossRef]
  16. P. Ewart, “A Modeless, Variable Bandwidth, Tunable Dye Laser,” Opt. Commun. 55, 124–126 (1985).
    [CrossRef]
  17. D. J. Rakestraw, R. Lucht, T. Dreier, “Use of a Charge-Coupled-Device Camera for Broadband Coherent Anti-Stokes Raman Scattering Measurements,” Appl. Opt. 28, 4116–4120 (1989).
    [CrossRef] [PubMed]

1989 (1)

1988 (1)

1987 (4)

1986 (1)

1985 (4)

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Applications of CARS in Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

P. Ewart, “A Modeless, Variable Bandwidth, Tunable Dye Laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907–913 (1985).
[CrossRef] [PubMed]

M. Pealat, P. Bourchardy, M. Lefebvre, J.-P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef] [PubMed]

1984 (2)

1981 (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

1980 (1)

N. K. Dutta, “Two-Photon Resonant Four-Wave Mixing with Non-Monochromatic Waves,” J. Phys. B 13, 411–426 (1980).
[CrossRef]

Alden, M.

Berglind, T.

Bourchardy, P.

Burton, S. A.

Dreier, T.

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Dutta, N. K.

N. K. Dutta, “Two-Photon Resonant Four-Wave Mixing with Non-Monochromatic Waves,” J. Phys. B 13, 411–426 (1980).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Applications of CARS in Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

A. C. EckbrethLaser Diagnostics for Combustion, Temperature and Species (Abacus, Cambridge, MA1988).

Ewart, P.

P. Ewart, “A Modeless, Variable Bandwidth, Tunable Dye Laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Farrow, R. L.

Garneau, J. M.

Greenhalgh, D. A.

Hall, R. J.

Kroll, S.

Lefebvre, M.

Li, Z. W.

Lucht, R.

Lucht, R. P.

Parameswaran, T.

Pealat, M.

Radzewicz, C.

Rahn, L. A.

Rakestraw, D. J.

Raymer, M. G.

Sandell, D.

Sawchuk, R. A.

Smallwood, G. J.

Snelling, D. R.

Snyder, J. J.

Stufflebeam, J. H.

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Applications of CARS in Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

Taran, J. P. E.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Taran, J.-P.

Westling, L. A.

Whittley, S. T.

Appl. Opt. (5)

Exp. Fluids (1)

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Applications of CARS in Turbulent Reacting Flows,” Exp. Fluids 3, 301–314 (1985).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

N. K. Dutta, “Two-Photon Resonant Four-Wave Mixing with Non-Monochromatic Waves,” J. Phys. B 13, 411–426 (1980).
[CrossRef]

Opt. Commun. (1)

P. Ewart, “A Modeless, Variable Bandwidth, Tunable Dye Laser,” Opt. Commun. 55, 124–126 (1985).
[CrossRef]

Opt. Lett. (3)

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
[CrossRef]

Other (2)

A. C. EckbrethLaser Diagnostics for Combustion, Temperature and Species (Abacus, Cambridge, MA1988).

D. A. Greenhalgh, “Quantitative CARS Spectroscopy,” in Advances in Nonlinear Spectroscopy, R. E. Hester, Ed. (Wiley, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optical system of the modeless laser: (a) elevation view showing the principle of the travelling wave amplification through a series of parallel active regions separated by typically 6 mm; (b) plan view where the frequency selective device is a diffraction grating at near grazing incidence.

Fig. 2
Fig. 2

Standard deviation of noise on CARS spectra produced (A) by a conventional long-cavity broadband dye laser and (B) by the modeless dye laser of Ref. 16.

Fig. 3
Fig. 3

Histogram of single-shot temperature measurements by broadband CARS using the modeless laser. The measurements were made in the nitrogen of room air in an isothermal oven at a temperature of 1209 K as measured by a K-type thermocouple.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω AS = 2 ω L ω S .
ω M = ω L ω S
ω AS = ω L + ω M .

Metrics