Abstract

A silicon filament vacuum sealed incandescent light source has been fabricated using IC technology. The incandescent source consists of a heavily doped p+ polysilicon filament coated with silicon nitride and enclosed in a vacuum sealed (≈80-mT) cavity in the silicon chip surface. The filament is electrically heated to reach incandescence at a temperature near 1400 K. The power required to achieve this temperature for a filament 510 × 5 × 1 μm3 is 5 mW yielding a total optical power of 250 μm with a peak distribution wavelength near 2.5 μW. The radiation emitted by this source approximately follows Lambert’s cosine law. The energy conversion efficiency is 5%.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Alt, “Performance and Design Considerations of the Thin-Film Tungsten Matrix Display,” IEEE Trans. Electron Devices ED-20, 1006–1015 (1973).
    [CrossRef]
  2. F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
    [CrossRef]
  3. H. Guckel, D. W. Burns, “Integrated Transducers Based on Blackbody Radiation from Heated Polysilicon Films,” in Transducers’ 85 (11–14 June 1985), pp. 364–366.
  4. G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).
  5. R. T. Howe, “Surface Micromachining for Microsensors and Microactuators,” J. Vac. Sci. Technol. B 6(6), 1809–1813 (1988).
    [CrossRef]
  6. C. H. Mastrangelo, R. S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” in Technical Digest, IEEE International Electron Devices Meeting (1989), pp. 503–506.
    [CrossRef]
  7. M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
    [CrossRef]
  8. C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).
  9. H. Guckel, D. W. Burns, “Fabrication Techniques for Integrated Sensor Microstructures,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 176–179.
  10. S. Sugiyama et al., “Microdiaphragm Pressure Sensor,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 184–187.
  11. H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).
  12. H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).
  14. D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
    [CrossRef]
  15. C. M. Hargreaves, “Anomalous Radiative Transfer Between Closely-Spaced Bodies,” Phys. Lett. A 30, 491–492 (1969).
    [CrossRef]
  16. Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
    [CrossRef]
  17. F. Llewellyn Jones, The Physics of Electric Contacts (Clarendon, Oxford, 1957).
  18. R. Holm, Electric Contacts (Springer-Verlag, New York, 1967).
  19. T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).
  20. V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).
  21. C. H. Liebert, “Spectral Emissivity of Highly Doped Silicon,” Prog. Astronaut. Aeronaut. 20, 17–40 (1967).
  22. H. Y. Fan, M. Becker, “Infrared Optical Properties of Silicon and Germanium,” Proceedings, Conference on Semiconducting Materials (Butterworth, London, 1951), pp. 132–147.
  23. K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
    [CrossRef]
  24. H. R. Philipp, “Optical Properties of Silicon Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
    [CrossRef]
  25. V. I. Belyi et al., Silicon Nitride in Electronics (Elsevier, Amsterdam, 1988).
  26. D. Y. Svet, Thermal Radiation; Metals, Semiconductors, Ceramics, Partly Transparent Bodies and Films (Consultants Bureau, New York, 1965).
  27. H. O. McMahon, “Thermal Radiation from Partially Transparent Reflecting Bodies,” J. Opt. Soc. Am. 40, 376–380 (1950).
    [CrossRef]
  28. R. Gardon, “The Emissivity of Transparent Materials,” J. Am. Ceram. Soc. 39, 278–287 (1956).
    [CrossRef]
  29. Y. S. Touloukian, Ed., Thermophysical Properties of Matter, Vol. 8: Thermal Radiative Properties (IFI/Plenum, New York, 1972).

1989 (1)

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).

1988 (2)

R. T. Howe, “Surface Micromachining for Microsensors and Microactuators,” J. Vac. Sci. Technol. B 6(6), 1809–1813 (1988).
[CrossRef]

Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
[CrossRef]

1982 (1)

M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
[CrossRef]

1973 (3)

P. M. Alt, “Performance and Design Considerations of the Thin-Film Tungsten Matrix Display,” IEEE Trans. Electron Devices ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
[CrossRef]

H. R. Philipp, “Optical Properties of Silicon Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[CrossRef]

1972 (1)

H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).

1971 (2)

D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

1969 (1)

C. M. Hargreaves, “Anomalous Radiative Transfer Between Closely-Spaced Bodies,” Phys. Lett. A 30, 491–492 (1969).
[CrossRef]

1967 (1)

C. H. Liebert, “Spectral Emissivity of Highly Doped Silicon,” Prog. Astronaut. Aeronaut. 20, 17–40 (1967).

1956 (1)

R. Gardon, “The Emissivity of Transparent Materials,” J. Am. Ceram. Soc. 39, 278–287 (1956).
[CrossRef]

1950 (1)

Alt, P. M.

P. M. Alt, “Performance and Design Considerations of the Thin-Film Tungsten Matrix Display,” IEEE Trans. Electron Devices ED-20, 1006–1015 (1973).
[CrossRef]

Baltes, H. P.

H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).

H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.

Bean, K. E.

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

Becker, M.

H. Y. Fan, M. Becker, “Infrared Optical Properties of Silicon and Germanium,” Proceedings, Conference on Semiconducting Materials (Butterworth, London, 1951), pp. 132–147.

Belyi, V. I.

V. I. Belyi et al., Silicon Nitride in Electronics (Elsevier, Amsterdam, 1988).

Brown, A. V.

F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
[CrossRef]

Burgess, A.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).

Burns, D. W.

H. Guckel, D. W. Burns, “Integrated Transducers Based on Blackbody Radiation from Heated Polysilicon Films,” in Transducers’ 85 (11–14 June 1985), pp. 364–366.

H. Guckel, D. W. Burns, “Fabrication Techniques for Integrated Sensor Microstructures,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 176–179.

Fan, H. Y.

H. Y. Fan, M. Becker, “Infrared Optical Properties of Silicon and Germanium,” Proceedings, Conference on Semiconducting Materials (Butterworth, London, 1951), pp. 132–147.

Fistul, V. I.

V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).

Gardon, R.

R. Gardon, “The Emissivity of Transparent Materials,” J. Am. Ceram. Soc. 39, 278–287 (1956).
[CrossRef]

Gleim, P. S.

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

Guckel, H.

H. Guckel, D. W. Burns, “Fabrication Techniques for Integrated Sensor Microstructures,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 176–179.

H. Guckel, D. W. Burns, “Integrated Transducers Based on Blackbody Radiation from Heated Polysilicon Films,” in Transducers’ 85 (11–14 June 1985), pp. 364–366.

Hargreaves, C. M.

C. M. Hargreaves, “Anomalous Radiative Transfer Between Closely-Spaced Bodies,” Phys. Lett. A 30, 491–492 (1969).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

Hochberg, F.

F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
[CrossRef]

Holm, R.

R. Holm, Electric Contacts (Springer-Verlag, New York, 1967).

Howe, R. T.

R. T. Howe, “Surface Micromachining for Microsensors and Microactuators,” J. Vac. Sci. Technol. B 6(6), 1809–1813 (1988).
[CrossRef]

Jhabvala, M.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).

Kneubuhl, F. K.

H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).

H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.

Lamb, G.

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).

Liebert, C. H.

C. H. Liebert, “Spectral Emissivity of Highly Doped Silicon,” Prog. Astronaut. Aeronaut. 20, 17–40 (1967).

Llewellyn Jones, F.

F. Llewellyn Jones, The Physics of Electric Contacts (Clarendon, Oxford, 1957).

Mastrangelo, C. H.

Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
[CrossRef]

C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).

C. H. Mastrangelo, R. S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” in Technical Digest, IEEE International Electron Devices Meeting (1989), pp. 503–506.
[CrossRef]

McMahon, H. O.

Moss, T. S.

T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

Muller, R. S.

Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
[CrossRef]

C. H. Mastrangelo, R. S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” in Technical Digest, IEEE International Electron Devices Meeting (1989), pp. 503–506.
[CrossRef]

C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).

Muri, R.

H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.

Ohkubo, T.

M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
[CrossRef]

Philipp, H. R.

H. R. Philipp, “Optical Properties of Silicon Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[CrossRef]

Polder, D.

D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Runyan, W. R.

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

Seitz, H. K.

F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
[CrossRef]

Sekimoto, M.

M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
[CrossRef]

Sugiyama, S.

S. Sugiyama et al., “Microdiaphragm Pressure Sensor,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 184–187.

Svet, D. Y.

D. Y. Svet, Thermal Radiation; Metals, Semiconductors, Ceramics, Partly Transparent Bodies and Films (Consultants Bureau, New York, 1965).

Tai, Y. C.

Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
[CrossRef]

C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).

Van Hove, M.

D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Yeakley, R. L.

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

Yoshihara, H.

M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
[CrossRef]

Helv. Phys. Acta (1)

H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).

IEEE Trans. Electron Devices (2)

P. M. Alt, “Performance and Design Considerations of the Thin-Film Tungsten Matrix Display,” IEEE Trans. Electron Devices ED-20, 1006–1015 (1973).
[CrossRef]

F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. Gardon, “The Emissivity of Transparent Materials,” J. Am. Ceram. Soc. 39, 278–287 (1956).
[CrossRef]

J. Appl. Phys. (1)

Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989).
[CrossRef]

J. Electrochem. Soc. (2)

K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971).
[CrossRef]

H. R. Philipp, “Optical Properties of Silicon Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. (1)

M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. T. Howe, “Surface Micromachining for Microsensors and Microactuators,” J. Vac. Sci. Technol. B 6(6), 1809–1813 (1988).
[CrossRef]

NASA Tech Briefs (1)

G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).

Phys. Lett. A (1)

C. M. Hargreaves, “Anomalous Radiative Transfer Between Closely-Spaced Bodies,” Phys. Lett. A 30, 491–492 (1969).
[CrossRef]

Phys. Rev. B (1)

D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

C. H. Liebert, “Spectral Emissivity of Highly Doped Silicon,” Prog. Astronaut. Aeronaut. 20, 17–40 (1967).

Other (15)

H. Y. Fan, M. Becker, “Infrared Optical Properties of Silicon and Germanium,” Proceedings, Conference on Semiconducting Materials (Butterworth, London, 1951), pp. 132–147.

V. I. Belyi et al., Silicon Nitride in Electronics (Elsevier, Amsterdam, 1988).

D. Y. Svet, Thermal Radiation; Metals, Semiconductors, Ceramics, Partly Transparent Bodies and Films (Consultants Bureau, New York, 1965).

Y. S. Touloukian, Ed., Thermophysical Properties of Matter, Vol. 8: Thermal Radiative Properties (IFI/Plenum, New York, 1972).

H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

F. Llewellyn Jones, The Physics of Electric Contacts (Clarendon, Oxford, 1957).

R. Holm, Electric Contacts (Springer-Verlag, New York, 1967).

T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).

V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).

C. H. Mastrangelo, R. S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” in Technical Digest, IEEE International Electron Devices Meeting (1989), pp. 503–506.
[CrossRef]

H. Guckel, D. W. Burns, “Integrated Transducers Based on Blackbody Radiation from Heated Polysilicon Films,” in Transducers’ 85 (11–14 June 1985), pp. 364–366.

C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).

H. Guckel, D. W. Burns, “Fabrication Techniques for Integrated Sensor Microstructures,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 176–179.

S. Sugiyama et al., “Microdiaphragm Pressure Sensor,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 184–187.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic cross section of the vacuum sealed microlamp.

Fig. 2
Fig. 2

Top view of three vacuum sealed microlamps 390, 430, and 470 μm long, respectively. The silicon nitride windows are 55 μm wide.

Fig. 3
Fig. 3

Top view of a microlamp in which the window has been punctured to show the filament beneath. Note the alternating etching holes and anchors surrounding the window.

Fig. 4
Fig. 4

SEM photograph of a cleaved wafer showing a microlamp cross section. The broken filament inside the cavity is free and not bonded to the window. The depth of the V-groove is ~25 μm.

Fig. 5
Fig. 5

Apparatus used for the radiation measurements.

Fig. 6
Fig. 6

Optical transmission of a 1.3-μm thick low stress nitride membrane.

Fig. 7
Fig. 7

Radiant intensity of a 510- × 5- × 1-μm3 microlamp at normal incidence as a function of the applied voltage.

Fig. 8
Fig. 8

Normalized angular radiant intensity as a function of incident angle. The curve is independent of azimuth angle ϕ.

Fig. 9
Fig. 9

Normalized spectral distribution of a battery of ten microlamps operated in parallel connection at 6 V. The distribution peaks near 2.5 μm. The dashed line represents a fit of Eq. (1) using Tmax = 1400 K.

Fig. 10
Fig. 10

Computed peak wavelength λp of the radiation of a black-body filament with T(x) of Eq. (7) (dashed line), and λp of the same radiation filtered through the nitride window (solid line) with the transmission of Eq. (4). Note that λp for the filtered radiation is a discontinuous function of Tmax.

Tables (1)

Tables Icon

Table I Optical Filters and Absorbing Glasses

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P ( λ ) = w 0 l [ T ( x ) , λ ] I b [ T ( x ) , λ ] Γ ( λ ) d x ,
I b ( T , λ ) = c 4 D ( λ ) ћ ω [ exp ( ћ ω k T ) 1 ] , ω = 2 π c λ ,
D ( λ ) d λ = 8 π λ 4 d λ .
Γ ( λ ) = 1 [ 1 + ( 1 n 2 ) 2 4 n 2 sin 2 ( 2 π t n λ ) ] ,
d d x [ κ e ( T ) d T d x ] = J 2 ρ o ( T ) ,
κ e = κ poly + κ nit A nit A poly ,
T ( x ) T s + ( T max T s ) [ 1 4 ( x l / 2 ) 2 l 2 ] ,
V 2 = 8 T s T max κ e ( T ) ρ o ( T ) d T = 8 κ e ρ o ¯ ( T max T s ) ,
P T ( T max ) = P T ( V ) = 0 P ( λ ) d λ = f P b ( V ) ,
P b ( V ) w 0 0 l I b [ T ( x ) , λ ] Γ ( λ ) d x d λ .
P T ( V ) 128 315 Γ ¯ f σ s w l ( T max T s ) 4 + o [ ( T max T s ) 3 ] ,
P T ( V ) 16 315 ( Γ ¯ f σ s κ e ρ o ¯ 4 ) w l V 8 η w l V 8 V n .
Φ ( θ ) = Φ ( 0 ) n = 1 a n cos ( n θ ) Φ ( 0 ) [ cos ( θ ) + a 3 cos ( 3 θ ) + h . o . t . ] ,
P T = 0 2 π Φ ( θ , ϕ ) d α = 0 2 π 0 π / 2 Φ ( θ , ϕ ) sin ( θ ) d θ d ϕ 2 . 77 Φ ( 0 ) ,
λ p T max = a ,

Metrics