Abstract

This paper investigates the possible techniques for measurement of the extinction coefficient of oils in the near UV. Results show that the best technique, in precision and ease of use, is the unknown thickness method. This method, never proposed up to now as far as we know, allows the use of a standard spectrophotometer. Beer’s law is also validated for oils and a simple function is proposed for fitting the extinction coefficient spectra.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Gillot, F. Toselli, Eds., The Archimedes I Experiment, Commission of the European Communities, Ispra Establishment, EUR 10216 EN (1985).
  2. R. H. Gillot, Ed., The Archimedes II Experiment, Commission of the European Communities, Ispra Establishment, EUR 11249 EN, (1987).
  3. F. Castagnoli et al., “First Field Tests of the Fluorescence Lidar FLIDAR 2,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20– June 1988), p. 168.
  4. F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269–3281 (1980).
    [CrossRef] [PubMed]
  5. P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluoresensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
    [CrossRef] [PubMed]
  6. R. T. V. Kung, I. Itzkan, “Absolute Oil Fluorescence Conversion Efficiency,” Appl. Opt. 15, 409–415 (1976).
    [CrossRef] [PubMed]
  7. H. Visser, “Teledetection of the Thickness of Oil Film on Polluted Water Based on the Oil Fluorescence Properties,” Appl. Opt. 18, 1746–1749 (1979).
    [CrossRef] [PubMed]
  8. F. E. Hoge, “Oil Film Thickness Using Airborne Laser-Induced Oil Fluorescence Backscatter,” Appl. Opt. 22, 3316–3318 (1983).
    [CrossRef] [PubMed]
  9. H. H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy (Wiley, New York, 1962).
  10. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978).
  11. T. Sato, Y. Suzuki, H. Kashiwagi, M. Nanjo, Y. Kakui, “Laser Radar for Remote Detection of Oil Spills,” Appl. Opt. 17, 3798–3803 (1978).
    [CrossRef] [PubMed]
  12. R. A. O’Neil, F. E. Hoge, M. P. F. Bristow, “The Current Status of Airborne Laser Fluorosensing,” in Proceedings Fifteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1981), p. 379.
  13. F. Castagnoli et al., “Remote Sensing of Oil on Sea: Lidar and Passive I.R. Experiments,” in Proceedings, EARSeL/ESA Symposium on European Remote Sensing Opportunities: Systems, Sensors and Applications, Strasbourg, France ESA SP-233 (Mar.1985), p. 121.
  14. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).
  15. L. Pantani, G. Cecchi, “Fluorescence Lidar Remote Sensing of Sea Surface and Land,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20–24 June 1988), p. 77.
  16. F. E. Hoge, J. S. Kincaid, “Laser Measurement of Extinction Coefficients of Highly Absorbing Liquids,” Appl. Opt. 19, 1143–1150 (1980).
    [CrossRef] [PubMed]
  17. F. E. Hoge, “Laser Measurement of the Spectral Extinction Coefficients of Fluorescent, Highly Absorbing Liquids,” Appl. Opt. 21, 1725–1729 (1982).
    [CrossRef] [PubMed]
  18. J. E. Freund, Mathematical Statistics (Prentice-Hall, Englewood Cliffs, NJ, 1972).
  19. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  20. R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).
  21. R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics,” Final Report 2766-7-F, Willow Run Laboratories (1970).

1983 (2)

1982 (1)

1980 (2)

1979 (1)

1978 (1)

1976 (1)

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

Bristow, M. P. F.

R. A. O’Neil, F. E. Hoge, M. P. F. Bristow, “The Current Status of Airborne Laser Fluorosensing,” in Proceedings Fifteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1981), p. 379.

Burlamacchi, P.

Castagnoli, F.

F. Castagnoli et al., “Remote Sensing of Oil on Sea: Lidar and Passive I.R. Experiments,” in Proceedings, EARSeL/ESA Symposium on European Remote Sensing Opportunities: Systems, Sensors and Applications, Strasbourg, France ESA SP-233 (Mar.1985), p. 121.

F. Castagnoli et al., “First Field Tests of the Fluorescence Lidar FLIDAR 2,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20– June 1988), p. 168.

Cecchi, G.

P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluoresensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
[CrossRef] [PubMed]

L. Pantani, G. Cecchi, “Fluorescence Lidar Remote Sensing of Sea Surface and Land,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20–24 June 1988), p. 77.

Freund, J. E.

J. E. Freund, Mathematical Statistics (Prentice-Hall, Englewood Cliffs, NJ, 1972).

Hoge, F. E.

Horvath, R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics,” Final Report 2766-7-F, Willow Run Laboratories (1970).

Itzkan, I.

Jaffe, H. H.

H. H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy (Wiley, New York, 1962).

Kakui, Y.

Kashiwagi, H.

Kincaid, J. S.

Kung, R. T. V.

Mazzinghi, P.

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

Morgan, W. L.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics,” Final Report 2766-7-F, Willow Run Laboratories (1970).

Nanjo, M.

O’Neil, R. A.

R. A. O’Neil, F. E. Hoge, M. P. F. Bristow, “The Current Status of Airborne Laser Fluorosensing,” in Proceedings Fifteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1981), p. 379.

Orchin, M.

H. H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy (Wiley, New York, 1962).

Pantani, L.

P. Burlamacchi, G. Cecchi, P. Mazzinghi, L. Pantani, “Performance Evaluation of UV Sources for Lidar Fluoresensing of Oil Films,” Appl. Opt. 22, 48–53 (1983).
[CrossRef] [PubMed]

L. Pantani, G. Cecchi, “Fluorescence Lidar Remote Sensing of Sea Surface and Land,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20–24 June 1988), p. 77.

Sato, T.

Spellicy, R.

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics,” Final Report 2766-7-F, Willow Run Laboratories (1970).

Stewart, S. R.

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

Suzuki, Y.

Swift, R. N.

Visser, H.

Weissbluth, M.

M. Weissbluth, Atoms and Molecules (Academic, New York, 1978).

Appl. Opt. (8)

Other (13)

J. E. Freund, Mathematical Statistics (Prentice-Hall, Englewood Cliffs, NJ, 1972).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

R. Horvath, W. L. Morgan, S. R. Stewart, “Optical Remote Sensing of Oil Slicks: Signature Analysis and Systems Evaluation,” Final Report, U.S. Coast Guard Project 724104.2/1 (1971).

R. Horvath, W. L. Morgan, R. Spellicy, “Measurements Program for Oil-Slick Characteristics,” Final Report 2766-7-F, Willow Run Laboratories (1970).

R. H. Gillot, F. Toselli, Eds., The Archimedes I Experiment, Commission of the European Communities, Ispra Establishment, EUR 10216 EN (1985).

R. H. Gillot, Ed., The Archimedes II Experiment, Commission of the European Communities, Ispra Establishment, EUR 11249 EN, (1987).

F. Castagnoli et al., “First Field Tests of the Fluorescence Lidar FLIDAR 2,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20– June 1988), p. 168.

R. A. O’Neil, F. E. Hoge, M. P. F. Bristow, “The Current Status of Airborne Laser Fluorosensing,” in Proceedings Fifteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1981), p. 379.

F. Castagnoli et al., “Remote Sensing of Oil on Sea: Lidar and Passive I.R. Experiments,” in Proceedings, EARSeL/ESA Symposium on European Remote Sensing Opportunities: Systems, Sensors and Applications, Strasbourg, France ESA SP-233 (Mar.1985), p. 121.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984).

L. Pantani, G. Cecchi, “Fluorescence Lidar Remote Sensing of Sea Surface and Land,” in Proceedings, Fourteenth International Laser Radar Conference, Innichen/San Candido, Italy (20–24 June 1988), p. 77.

H. H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy (Wiley, New York, 1962).

M. Weissbluth, Atoms and Molecules (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Direct measurement with the spectrophotometer and a 100-μm thickness cell on typical oil samples: dashed line, heavy fuel oil; solid line, light Arabian; long dashed line, Murban.

Fig. 2
Fig. 2

Measurement with the absorbing reference. Solid line is the Murban oil sample, reference is a solution of Murban oil in cyclohexane (1:12); dashed line is a Schott GG400 filter. See text for explanation of the two jumps at 370 and 318 nm.

Fig. 3
Fig. 3

Dilution method: linear fitting of α(λ) vs dilution (Murban oil sample): long dashed line, 700 nm; dashed line, 500 nm; solid line, 350 nm.

Fig. 4
Fig. 4

Comparison between methods for the measurement of α(λ) in the near UV (Murban oil sample): dashed line, curve extrapolation method α(λ) = b· λa; long dashed line, dilution method (extrapolated with the straight line); solid line, unknown thickness method (see also Table IV).

Fig. 5
Fig. 5

Comparison of curve extrapolation method and unknown thickness method for the heavy fuel oil sample: circles, experimental data by the direct measurement method; dashed line, exponential fitting curve on direct measurement data; solid line, unknown thickness method; long dashed line, exponential fitting curve on unknown thickness values.

Tables (4)

Tables Icon

Table I Curve Extrapolation Method: Determination Coefficients R for the Five Curves Utilized: HFO, Heavy Fuel Oil; LA, Light Arabian, MU, Murban

Tables Icon

Table II Curve Extrapolation Method: Values of the a and b Parameters for the Fitting Curve α(λ) = b · λa, with α(λ) in μm−1 and λ in Nanometers

Tables Icon

Table III Values of Linear Fit Coefficients for the Dilution Method

Tables Icon

Table IV Extinction Coefficient (μm−1) Measured with the Four Methods (Murban oil)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( d , λ ) = I ( 0 , λ ) · exp [ α ( λ ) · d ] ,
α ( λ, c ) = c · α m ( λ ) ,
A ( λ ) = log 10 [ I ( 0 , λ ) I ( d , λ ) ] .
± 0 . 0015 A for 0 A 1 , ± 0 . 0030 A for 1 A 2 , ± 0 . 0050 A for A > 2 .
d u = A u ( λ 1 ) A k ( λ 1 ) · d k ,
α ( λ 2 ) = A u ( λ 2 ) d u · ln ( 10 ) .

Metrics