Abstract

Deep photoresist gratings, slanted as well as unslanted, were produced holographically in clear Shipley 1400 photoresist. The diffraction efficiencies of these gratings were measured as a function of incident angle for three wavelengths with polarization perpendicular to the plane of incidence. It is shown that the results agree fairly well with those predicted by Kogelnik’s two-wave theory, indicating that these relief gratings behave like volume holograms. An explanation in terms of thin and thick gratings is given, and practical conclusions are drawn from these observations.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), pp. 261 and 268.
  2. R. A. Bartolini, “Characteristics of Relief Phase Holograms Recorded in Photoresists,” Appl. Opt. 13, 129–139 (1974).
    [CrossRef] [PubMed]
  3. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  4. C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng. 390, 165–170 (1982).
  5. R. C. Enger, S. K. Case, “High Frequency Holographic Transmission Gratings in Photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
    [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, G. T. Sincerbox, H. Werlich, B. Yung, “Diffraction Characteristics of Photoresist Surface-Relief Gratings,” Appl. Opt. 23, 3214–3220 (1984).
    [CrossRef] [PubMed]
  7. R. Magnusson, T. K. Gaylord, “Diffraction Regimes of Transmission Gratings,” J. Opt. Soc. Am. 68, 809–814 (1978).
    [CrossRef]
  8. M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Bragg Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 14–18 (1980); “Criteria for Raman-Nath Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 19–23 (1980).
    [CrossRef]
  9. T. K. Gaylord, M. G. Moharam, “Thin and Thick Gratings: Terminology Clarification,” Appl. Opt. 20, 3271–3273 (1981).
    [CrossRef] [PubMed]
  10. R. Magnusson, T. K. Gaylord, “Analysis of Multiwave Diffraction of Thick Gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
    [CrossRef]
  11. M. G. Moharam, T. K. Gaylord, “Diffraction Analysis of Dielectric Surface-Relief Gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  12. M. G. Moharam, T. K. Gaylord, “Three-Dimensional Vector Coupled-Wave Analysis of Planar-Grating Diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  13. L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic Press, London, 1981).
  14. H. J. Gerritsen, “Dispersion Effects in Relief Holograms Immersed in Near Index Matched Liquids or Christiansen Revisited,” Appl. Opt. 25, 2382–2385 (1986).
    [CrossRef] [PubMed]

1986 (1)

1984 (1)

1983 (2)

1982 (2)

M. G. Moharam, T. K. Gaylord, “Diffraction Analysis of Dielectric Surface-Relief Gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
[CrossRef]

C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng. 390, 165–170 (1982).

1981 (1)

1980 (1)

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Bragg Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 14–18 (1980); “Criteria for Raman-Nath Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

1978 (1)

1977 (1)

1974 (1)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Bartolini, R. A.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), pp. 261 and 268.

Case, S. K.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), pp. 261 and 268.

Cooke, D. J.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic Press, London, 1981).

Enger, R. C.

Gaylord, T. K.

Gerritsen, H. J.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kramer, C. J.

C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng. 390, 165–170 (1982).

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), pp. 261 and 268.

Magnusson, R.

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Bragg Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 14–18 (1980); “Criteria for Raman-Nath Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

R. Magnusson, T. K. Gaylord, “Diffraction Regimes of Transmission Gratings,” J. Opt. Soc. Am. 68, 809–814 (1978).
[CrossRef]

R. Magnusson, T. K. Gaylord, “Analysis of Multiwave Diffraction of Thick Gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
[CrossRef]

Moharam, M. G.

Sincerbox, G. T.

Solymar, L.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic Press, London, 1981).

Werlich, H.

Yung, B.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Opt. Soc. Am. (5)

Opt. Commun. (1)

M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Bragg Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 14–18 (1980); “Criteria for Raman-Nath Regime Diffraction by Phase Gratings,” Opt. Commun. 32, 19–23 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

C. J. Kramer, “Hologon Laser Scanners for Nonimpact Printing,” Proc. Soc. Photo-Opt. Instrum. Eng. 390, 165–170 (1982).

Other (2)

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic Press, New York, 1971), pp. 261 and 268.

L. Solymar, D. J. Cooke, Volume Holography and Volume Gratings (Academic Press, London, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Grating 1: Λ = grating spacing = 625 nm; d = grating depth = 620 nm.

Fig. 2
Fig. 2

Grating 2: Λ = grating spacing = 504 nm; d = grating depth = 342 nm.

Fig. 3
Fig. 3

(a) Grating 3: Λ = grating spacing = 540 nm; d = grating depth = 540 nm; slant angle = 12 ± 0.5°. (b) Grating 3: profile detail of slanted grating.

Fig. 4
Fig. 4

Grating 1 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. ∇ - total light measured

Fig. 5
Fig. 5

Grating 1 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. × - second order. ⋄ - +1th order ∇ - total light measured

Fig. 6
Fig. 6

Grating 1 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. × - second order. ⋄ - −1th order ∇ - total light measured

Fig. 7
Fig. 7

Grating 1 + = experimental (corrected) 1st order

Fig. 8
Fig. 8

Grating 1 + - experimental (corrected) 1st order × - second order. ⋄ - −1st order

Fig. 9
Fig. 9

Grating 1 + - experimental (corrected) 1st order × - second order, ⋄ - −1st order

Fig. 10
Fig. 10

Grating 2 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. ∇ - total light measured

Fig. 11
Fig. 11

Grating 2 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. × - second order. ∇ - total light measured

Fig. 12
Fig. 12

Grating 2 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. × - second order. ∇ - total light measured

Fig. 13
Fig. 13

Grating 2 + - experimental (corrected) 1st order

Fig. 14
Fig. 14

Grating 2 + = experimental (corrected) 1st order

Fig. 15
Fig. 15

Grating 2 + = experimental (corrected) 1st order ×- second order. ○ = experimental 1st order

Fig. 16
Fig. 16

Grating 3 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. ∇ - total light measured

Fig. 17
Fig. 17

Grating 3 □ - zeroth order transmitted. Δ - zeroth order reflected. + - first order. × - second order. ∇ - total light measured

Fig. 18
Fig. 18

Grating 3 □ - zeroth order transmitted. Δ - zeroth order reflected + - first order. × - second order. ⋄ = -1st order ∇ - total light measured

Fig. 19
Fig. 19

Grating 3 + = experimental (corrected) 1st order

Fig. 20
Fig. 20

Grating 3 + = experimental (corrected) 1st order × = second order

Fig. 21
Fig. 21

Grating 3 + - experimental (corrected) 1st order × - second order

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I corrected + 1 = I + 1 fraction of light accounted for + I reflected + 1 + I refleced 0 ( I + 1 + I reflected + 1 I 0 + I + 1 + I reflected + 1 ) ,
Q = 2 π λ d n ¯ Λ 2 cos Ө ,
γ = π n 1 d λ cos Ө ,
Q 1 = 4 . 7 , γ 1 = 1 . 0 ; Q 2 = 3 . 2 , γ 2 = 0 . 7 ; Q 3 = 4 . 7 , γ 3 = 1 . 0 .

Metrics