Abstract

Transmission images through a highly scattering medium have been obtained using picosecond pulses of visible light. The imaging method involves recording and discriminating between the times-of-flight of photons that penetrate the medium and using a fraction of the light with the shortest travel times to construct an image. The technique is being developed as a possible alternative method of screening for breast cancer without using potentially harmful x-rays. One- and two-dimensional images are presented of objects whose optical thicknesses are comparable with those of the human breast at visible wavelengths.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: A Time-of-Flight Imaging System,” Med. Phys. 17, 351–356 (1990).
    [CrossRef] [PubMed]
  2. J. C. Hebden, R. A. Kruger, “Simulating the Performance of a Time-of-Flight Transillumination Imaging System,” Proc. Soc. Photo-Opt. Instrum Eng. 1205, 142–149 (1990).
  3. R. J. Bartrum, H. C. Crow, “Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study,” Am. J. Roentgenol. 142, 409–414 (1984).
  4. G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).
  5. S. Ertefai, A. E. Profio, “Spectral Transmittance and Contrast in Breast Diaphanography,” Med. Phys. 12, 393–400 (1985).
    [CrossRef] [PubMed]
  6. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  7. R. J. Crilly, “The Transport of Infrared Radiation Through Tissue,” M.S. Thesis, U. Alberta (1987).
  8. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
    [CrossRef] [PubMed]
  9. J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
    [CrossRef] [PubMed]
  10. M. A. Duguay, A. T. Mattick, “Ultrahigh Speed Photography of Picosecond Light Pulses and Echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef] [PubMed]
  11. P. P. Ho, P. L. Baldeck, K. S. Wong, K. M. Yoo, D. Lee, R. R. Alfano, “Time Dynamics of Photon Migration in Semiopaque Random Media,” Appl. Opt. 28, 2304–2310 (1989).
    [CrossRef] [PubMed]
  12. D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  13. J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: Spatial Resolution Simulation Studies,” Med. Phys. 17, 41–47 (1990).
    [CrossRef] [PubMed]
  14. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

1990 (4)

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: A Time-of-Flight Imaging System,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Simulating the Performance of a Time-of-Flight Transillumination Imaging System,” Proc. Soc. Photo-Opt. Instrum Eng. 1205, 142–149 (1990).

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: Spatial Resolution Simulation Studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (1)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

1985 (2)

G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).

S. Ertefai, A. E. Profio, “Spectral Transmittance and Contrast in Breast Diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

1984 (1)

R. J. Bartrum, H. C. Crow, “Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study,” Am. J. Roentgenol. 142, 409–414 (1984).

1980 (1)

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

1971 (1)

Alfano, R. R.

Antonetti, A.

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

Arridge, S.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Baldeck, P. L.

Bartrum, R. J.

R. J. Bartrum, H. C. Crow, “Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study,” Am. J. Roentgenol. 142, 409–414 (1984).

Cope, M.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Crilly, R. J.

R. J. Crilly, “The Transport of Infrared Radiation Through Tissue,” M.S. Thesis, U. Alberta (1987).

Crow, H. C.

R. J. Bartrum, H. C. Crow, “Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study,” Am. J. Roentgenol. 142, 409–414 (1984).

DeLaney, C.

G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).

Delpy, D.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Duguay, M. A.

Ertefai, S.

S. Ertefai, A. E. Profio, “Spectral Transmittance and Contrast in Breast Diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

Fisher, J. R.

G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Geslien, G. E.

G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).

Grillon, G.

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: Spatial Resolution Simulation Studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: A Time-of-Flight Imaging System,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Simulating the Performance of a Time-of-Flight Transillumination Imaging System,” Proc. Soc. Photo-Opt. Instrum Eng. 1205, 142–149 (1990).

Ho, P. P.

Kruger, R. A.

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: Spatial Resolution Simulation Studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Simulating the Performance of a Time-of-Flight Transillumination Imaging System,” Proc. Soc. Photo-Opt. Instrum Eng. 1205, 142–149 (1990).

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: A Time-of-Flight Imaging System,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Lecarpentier, Y.

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

Lee, D.

Martin, J. L.

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

Mattick, A. T.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Profio, A. E.

S. Ertefai, A. E. Profio, “Spectral Transmittance and Contrast in Breast Diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

van der Zee, P.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Wilson, T.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Wong, K. S.

Wray, S.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yoo, K. M.

Am. J. Roentgenol. (2)

R. J. Bartrum, H. C. Crow, “Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study,” Am. J. Roentgenol. 142, 409–414 (1984).

G. E. Geslien, J. R. Fisher, C. DeLaney, “Transillumination in Breast Cancer Detection: Screening Failures and Potential,” Am. J. Roentgenol. 144, 619–622 (1985).

Appl. Opt. (2)

Med. Biol. Eng. Comput. (1)

J. L. Martin, Y. Lecarpentier, A. Antonetti, G. Grillon, “Picosecond Laser Stereometry Light Scattering Measurements on Biological Material,” Med. Biol. Eng. Comput. 18, 250–252 (1980).
[CrossRef] [PubMed]

Med. Phys. (4)

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: A Time-of-Flight Imaging System,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

S. Ertefai, A. E. Profio, “Spectral Transmittance and Contrast in Breast Diaphanography,” Med. Phys. 12, 393–400 (1985).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination Imaging Performance: Spatial Resolution Simulation Studies,” Med. Phys. 17, 41–47 (1990).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical Properties of Normal and Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

D. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum Eng. (1)

J. C. Hebden, R. A. Kruger, “Simulating the Performance of a Time-of-Flight Transillumination Imaging System,” Proc. Soc. Photo-Opt. Instrum Eng. 1205, 142–149 (1990).

Other (2)

R. J. Crilly, “The Transport of Infrared Radiation Through Tissue,” M.S. Thesis, U. Alberta (1987).

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental arrangement for obtaining 1- and 2-D time-of-flight images.

Fig. 2
Fig. 2

Highly scattering object for 1-D time-of-flight imaging.

Fig. 3
Fig. 3

Continuous source scans of the object (a) without the scattering solution (dashed line) and (b) filled with the scattering solution (solid line). The scans are represented here by the logarithm of the power readings plotted against the laser beam position.

Fig. 4
Fig. 4

Typical intensity vs time profile indicating the reference pulse and the scatterbroadened diagnostic pulse.

Fig. 5
Fig. 5

Typical integrated diagnostic pulse profile.

Fig. 6
Fig. 6

One-dimensional (horizontal) scans across the object as a function of integration time (vertical, increasing downward from 0 to 320 ps).

Fig. 7
Fig. 7

One-dimensional (horizontal) scans across the object as a function of integration time (vertical, increasing downward from 0 to 35 ps).

Fig. 8
Fig. 8

Highly scattering object for 2-D time-of-flight imaging.

Fig. 9
Fig. 9

Continuous source images of the object (a) without the scattering solution (top) and (b) filled with the scattering solution (bottom).

Fig. 10
Fig. 10

Time-of-flight images of the object using transmitted light integrated over periods of (a) 375, (b) 250, (c) 112, (d) 87.5, (e) 62.5, and (f) 37.5 ps.

Metrics