Abstract

The coherent optical technique of holographic correlation is applied to the nondestructive evaluation of ceramic materials. A Fresnel correlator is used to holographically construct a matched filter to a small test area on the surface of a silicon nitride ceramic. The subsequent change in correlation signal intensity, from localized microstructural changes occurring on the ceramic surface, is determined as the sample is subjected to thermal stress. A novel method to detect and quantify any loss in correlation signal strength arising from the bulk movement of the ceramic sample within its support is described. Results are presented which show that the correlation technique is capable of evaluating the characteristics of ceramic materials in terms of their response to thermal stress.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Rice, “Capabilities and Design Issues for Emerging Tough Ceramics,” Am. Ceram. Soc. Bull. 63, 256–262 (1984).
  2. W. N. Reynolds, “Radiographic, Ultrasonic and Infra-Red NDT Techniques for Ceramics,” Br. Ceram. Trans. J. 88, 124–126 (1989).
  3. C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).
  4. M. Chang, C.-P. Hu, P. Lam, J. C. Wyant, “High Precision Deformation Measurement by Digital Phase Shifting Holographic Interferometry,” Appl. Opt. 24, 3780–3783 (1985).
    [CrossRef] [PubMed]
  5. P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
    [CrossRef]
  6. K. A. Stetson, W. R. Brohinsky, “Fringe-Shifting Technique for Numerical Analysis of Time-Average Holograms of Vibrating Objects,” J. Opt. Soc. Am. A 5, 1472–1476 (1988).
    [CrossRef]
  7. A. B. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
    [CrossRef]
  8. D. Casasent, “Coherent Optical Pattern Recognition: A Review,” Opt. Eng. 24, 26–32 (1985).
    [CrossRef]
  9. J. W. Wagner, “Detecting Nonuniformity in Small Welds and Solder Seams Using Optical Correlation and Electronic Processing,” Appl. Opt. 20, 3605–3611 (1981).
    [CrossRef] [PubMed]
  10. K. Hinsch, K. Brokopf, “Real-Time Speckle Correlation by Holographic Matched Filtering for Measurement of Microstructure Changes and Motion Tracking,” Opt. Lett. 7, 51–53 (1982).
    [CrossRef] [PubMed]
  11. E. Marom, “Real-Time Strain Measurements by Optical Correlation,” Appl. Opt. 9, 1385–1391 (1970).
    [CrossRef] [PubMed]
  12. I. V. Kiryushcheva, V. A. Rabinovich, “Holographic Correlation Method for Testing Microdeformations,” Meas. Tech. U.S.A. 24, 275–280 (1981).
    [CrossRef]
  13. R. W. Jenkins, M. C. Mcllwain, “Holographic Analysis of Printed Circuit Boards,” Mater. Eval. 29, 199–204 (1971).
  14. E. Marom, “Holographic Correlation,” in Holographic Non-Destructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), Chap. 6.
  15. F. T. Yu, Q. W. Song, Y. S. Cheng, D. A. Gregory, “Comparison of Detection Efficiencies for VanderLugt and Joint Transform Correlators,” Appl. Opt. 29, 225–232 (1990).
    [CrossRef] [PubMed]
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  17. S. Hampshire, “The Role of Additives in the Pressureless Sintering of Nitrogen Ceramics for Engine Applications,” Met. Forum 7, 162–170 (1984).
  18. G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
    [CrossRef]

1990 (1)

1989 (2)

W. N. Reynolds, “Radiographic, Ultrasonic and Infra-Red NDT Techniques for Ceramics,” Br. Ceram. Trans. J. 88, 124–126 (1989).

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

1988 (1)

1987 (2)

G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
[CrossRef]

1985 (2)

1984 (2)

R. W. Rice, “Capabilities and Design Issues for Emerging Tough Ceramics,” Am. Ceram. Soc. Bull. 63, 256–262 (1984).

S. Hampshire, “The Role of Additives in the Pressureless Sintering of Nitrogen Ceramics for Engine Applications,” Met. Forum 7, 162–170 (1984).

1982 (1)

1981 (2)

J. W. Wagner, “Detecting Nonuniformity in Small Welds and Solder Seams Using Optical Correlation and Electronic Processing,” Appl. Opt. 20, 3605–3611 (1981).
[CrossRef] [PubMed]

I. V. Kiryushcheva, V. A. Rabinovich, “Holographic Correlation Method for Testing Microdeformations,” Meas. Tech. U.S.A. 24, 275–280 (1981).
[CrossRef]

1971 (1)

R. W. Jenkins, M. C. Mcllwain, “Holographic Analysis of Printed Circuit Boards,” Mater. Eval. 29, 199–204 (1971).

1970 (1)

1964 (1)

A. B. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Briggs, G. A.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Brohinsky, W. R.

Brokopf, K.

Casasent, D.

D. Casasent, “Coherent Optical Pattern Recognition: A Review,” Opt. Eng. 24, 26–32 (1985).
[CrossRef]

Chang, M.

Chao, C.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Cheng, Y. S.

Dunhill, A.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Fatkin, D. G.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Gee, A. E.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Gregory, D. A.

Hampshire, S.

S. Hampshire, “The Role of Additives in the Pressureless Sintering of Nitrogen Ceramics for Engine Applications,” Met. Forum 7, 162–170 (1984).

Heinrich, J.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Hinsch, K.

Hu, C.-P.

Jacquot, P.

P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
[CrossRef]

Jenkins, R. W.

R. W. Jenkins, M. C. Mcllwain, “Holographic Analysis of Printed Circuit Boards,” Mater. Eval. 29, 199–204 (1971).

Kiryushcheva, I. V.

I. V. Kiryushcheva, V. A. Rabinovich, “Holographic Correlation Method for Testing Microdeformations,” Meas. Tech. U.S.A. 24, 275–280 (1981).
[CrossRef]

Lam, P.

Lawrence, C. W.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Marom, E.

E. Marom, “Real-Time Strain Measurements by Optical Correlation,” Appl. Opt. 9, 1385–1391 (1970).
[CrossRef] [PubMed]

E. Marom, “Holographic Correlation,” in Holographic Non-Destructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), Chap. 6.

Mcllwain, M. C.

R. W. Jenkins, M. C. Mcllwain, “Holographic Analysis of Printed Circuit Boards,” Mater. Eval. 29, 199–204 (1971).

Pflug, L.

P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
[CrossRef]

Rabinovich, V. A.

I. V. Kiryushcheva, V. A. Rabinovich, “Holographic Correlation Method for Testing Microdeformations,” Meas. Tech. U.S.A. 24, 275–280 (1981).
[CrossRef]

Rastogi, P. K.

P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
[CrossRef]

Reynolds, W. N.

W. N. Reynolds, “Radiographic, Ultrasonic and Infra-Red NDT Techniques for Ceramics,” Br. Ceram. Trans. J. 88, 124–126 (1989).

Rice, R. W.

R. W. Rice, “Capabilities and Design Issues for Emerging Tough Ceramics,” Am. Ceram. Soc. Bull. 63, 256–262 (1984).

Scruby, C. B.

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

Song, Q. W.

Stetson, K. A.

VanderLugt, A. B.

A. B. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

Wagner, J. W.

Wötting, B.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Wyant, J. C.

Yu, F. T.

Ziegler, G.

G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

R. W. Rice, “Capabilities and Design Issues for Emerging Tough Ceramics,” Am. Ceram. Soc. Bull. 63, 256–262 (1984).

Appl. Opt. (4)

Br. Ceram. Trans. J. (2)

W. N. Reynolds, “Radiographic, Ultrasonic and Infra-Red NDT Techniques for Ceramics,” Br. Ceram. Trans. J. 88, 124–126 (1989).

C. B. Scruby, C. W. Lawrence, D. G. Fatkin, G. A. Briggs, A. Dunhill, A. E. Gee, C. Chao, “Non-Destructive Testing of Ceramics by Acoustic Microscopy,” Br. Ceram. Trans. J. 88, 127–132 (1989).

IEEE Trans. Inf. Theory (1)

A. B. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
[CrossRef]

J. Mater. Sci. (1)

G. Ziegler, J. Heinrich, B. Wötting, “Relationship Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride,” J. Mater. Sci. 22, 3041–3086 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. E. (1)

P. K. Rastogi, P. Jacquot, L. Pflug, “Holographic Interferometry Applied to the Study of Frost Damage in Concrete,” J. Phys. E. 20, 1522–1525 (1987).
[CrossRef]

Mater. Eval. (1)

R. W. Jenkins, M. C. Mcllwain, “Holographic Analysis of Printed Circuit Boards,” Mater. Eval. 29, 199–204 (1971).

Meas. Tech. U.S.A. (1)

I. V. Kiryushcheva, V. A. Rabinovich, “Holographic Correlation Method for Testing Microdeformations,” Meas. Tech. U.S.A. 24, 275–280 (1981).
[CrossRef]

Met. Forum (1)

S. Hampshire, “The Role of Additives in the Pressureless Sintering of Nitrogen Ceramics for Engine Applications,” Met. Forum 7, 162–170 (1984).

Opt. Eng. (1)

D. Casasent, “Coherent Optical Pattern Recognition: A Review,” Opt. Eng. 24, 26–32 (1985).
[CrossRef]

Opt. Lett. (1)

Other (2)

E. Marom, “Holographic Correlation,” in Holographic Non-Destructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), Chap. 6.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fresnel filter fabrication and central correlation intensity measurement.

Fig. 2
Fig. 2

Optical configuration for central correlation intensity measurements.

Fig. 3
Fig. 3

Variation in correlation signal intensity as the disk is rotated through the autocorrelation position.

Fig. 4
Fig. 4

Resulting variation in correlation signal intensity as the object is moved through the autocorrelation position in planes parallel and perpendicular to the filter plane.

Fig. 5
Fig. 5

Increase in recovery times for a ceramic surface as applied thermal stress is increased.

Fig. 6
Fig. 6

Recovery difference between two samples where test areas were subjected to 180-s applied heating.

Fig. 7
Fig. 7

Percent correlation intensity for test areas and average support region values for (a) four YT samples over thirty thermal cycles and (b) four ND samples over thirty thermal cycles.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O ( u , υ ) = C 1 f ( x , y ) exp { ( i k / 2 d ) [ ( x u ) 2 + ( y υ ) 2 ] } d x d y ,
R ( u , υ ) = C 2 exp { ( i k / 2 d ) [ ( u 2 + υ 2 ) ] } exp { i k ( μ u + ν υ ) } ,
τ ( u , υ ) O * ( u , υ ) R ( u , υ ) .
τ ( u , υ ) f * ( x , y ) exp { ( i k / 2 d ) [ ( x u ) 2 + ( y υ ) 2 ] } d x d y × exp [ i k ( u 2 + υ 2 ) / 2 d ] exp [ i k ( μ u + ν υ ) ] ,
τ ( u , υ ) O ( u , υ ) O ( u , υ ) O * ( u , υ ) R ( u , υ ) ,
I ( α , β ) = | f * [ x + ( α α 0 ) d / L , y + ( β β 0 ) d / L ] g ( x , y ) × exp { i k [ x ( α α 0 ) + y ( β β 0 ) ] / L } d x d y | 2 ,
I ( α 0 , β 0 ) = | f * ( x , y ) g ( x , y ) d x d y | 2 ,

Metrics