Abstract

A photothermal laser interferometric system is described that has sufficient sensitivity to allow the detection of the hydrazines: hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine at part per billion concentrations. A line tunable CO2 laser excites the trace hydrazine molecules in one arm of a modified Jamin interferometer illuminated with a single frequency He–Ne laser. The CO2 laser beam intersects one of the He–Ne beams in the interferometer at a small angle, so there is no interaction of the IR and visible laser beams at any optical components in the system. The system operates with computer control of interferometer alignment, CO2 excitation laser tuning, and data acquisition.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Sevin, “Criteria for a Recommended Standard—Occupational Exposure to Hydrazines,” Division of Criteria Documentation and Standards Development, U.S. Dept. of Health, Education, and Welfare, NIOSH Publ. 78-172 (June1978), p. 280.
  2. John V. Crable, Ed., NIOSH Manual of Analytical Techniques, Edition 2, DHEW (NIOSH) Publ. No. 77-157-C (1984).
  3. J. A. E. Hannum, “Recent Developments in the Toxicology of Propellant Hydrazines,” Chemical Propulsion Information Agency, CPTR 82-15 (June1982).
  4. K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
    [CrossRef]
  5. J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
    [CrossRef] [PubMed]
  6. E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981).
    [CrossRef]
  7. J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988).
    [CrossRef] [PubMed]
  8. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726–2734 (1980).
    [CrossRef] [PubMed]
  9. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).
  10. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648–1653 (1982).
    [CrossRef] [PubMed]
  11. G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
    [CrossRef]
  12. M. Shaw, Ed., Technical Information Data Sheet on HCl, HCN and Hydrazine Analyzers (Interscan Corp., P.O. Box 2496, Chatsworth, CA 91313-2496, 1990).
  13. J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
    [CrossRef]
  14. Technical Information Data on Toxic Gas Monitors (MDA Scientific, Inc., 405 Barclay Blvd., Lincolnshire, IL 60069.
  15. G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).
  16. F. Karasek, “Trace Analysis and Fundamental Studies by Plasma Chromatography,” Int. J. Environ. Anal. Chem. 2, 157–166 (1972).
    [CrossRef] [PubMed]
  17. F. Karasek, “Plasma Chromatography,” Anal. Chem. 46, 710A–720A (1974).
  18. C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985).
    [CrossRef]
  19. G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978).
    [CrossRef]
  20. T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
    [CrossRef]
  21. J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
    [CrossRef]
  22. J. Willet, Gas Chromatography (Wiley, Chichester, U.K., 1987).
  23. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989).
    [CrossRef]
  24. C. C. Davis, S. J. Petuchowski, “Phase Fluctuation Optical Heterodyne Spectroscopy of Gases,” Appl. Opt. 20, 2539–2554 (1981); Errata, 20, 4151–4151 (1981).
    [CrossRef] [PubMed]
  25. A. C. Tam, “Photoacoustics: Spectroscopy and Other Applications,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), pp. 1–108.
  26. P. Hess, J. Pelzl, Eds., Photoacoustic and Photothermal Phenomena (Springer-Verlag, Berlin, 1988).
  27. C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977).
    [CrossRef]
  28. N. J. Novichi, J. M. Harris, “Differential Thermal Lens Calorimetry,” Anal. Chem. 52, 2338–2342 (1980).
    [CrossRef]
  29. D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
    [CrossRef]
  30. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
    [CrossRef]
  31. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, The Netherlands, 1987).
    [CrossRef]
  32. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  33. A. J. Campillo, H-B Lin, C. J. Dodge, C. C. Davis, “Stark-Effect-Modulated Phase-Fluctuation Optical Heterodyne Interferometer for Trace-Gas Analysis,” Opt. Lett. 5, 424–426 (1980).
    [CrossRef] [PubMed]
  34. D. A. Stone, “Auto-Oxidation of Hydrazine Vapor,” U.S. Air Force Syst. Comm. Cir. Env. Eng. Dev. Off. Rep. CEEDO-TR-78-19, NTIS No. AD-A055467 (NTIS, Springfield, VA, 1978).
  35. W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
    [CrossRef]
  36. R. H. Dicke, “The Measurement of Thermal Radiation at Microwave Frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
    [CrossRef] [PubMed]
  37. H. P. Yuen, V. W. S. Chan, “Noise in Homodyne and Heterodyne Detection,” Opt. Lett. 8, 177–179 (1983); Errata, Opt. Lett.8, 345–345 (1983).
    [CrossRef] [PubMed]
  38. G. L. Abbas, V. W. S. Chan, T. K. Yee, “Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne Detection,” Opt. Lett. 8, 419–421 (1983).
    [CrossRef] [PubMed]
  39. C. C. Davis, “Building Small, Extremely Sensitive Practical Laser Interferometers for Sensor Application,” Nucl. Phys. B. 6, 290–297 (1989).
    [CrossRef]
  40. B. M. Oliver, “Signal-to-Noise Ratios in Photoelectric Mixing,” Proc. IRE 49, 1960 (1961).
  41. A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
    [CrossRef]
  42. F. R. Faxvog, H. W. Mocker, “Rapidly Tunable CO2 TEA Laser,” Appl. Opt. 21, 3986–3987 (1982).
    [CrossRef] [PubMed]
  43. J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
    [CrossRef]
  44. “EVIS Electronic Vibration Isolation System,” in Technical Data Information (Newport Corp., P.O. Box 8020, 18235 Mt. Baldy Circle, Fountain Valley, CA 92728-8020, 1989).
  45. L. T. Molina, W. B. Grant, “FTIR-Spectrometer-Determined Absorption Coefficients of Seven Hydrazine Fuel Gases: Implications for Laser Remote Sensing,” Appl. Opt. 23, 3893–3900 (1984).
    [CrossRef] [PubMed]
  46. W. B. Grant, “Water Vapor Absorption Coefficients in the 8–13-μm Spectral Region: A Critical Review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  47. M. W. Sigrist, “Atmospheric Trace Gas Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, Eds. (Springer-Verlag, Berlin, 1988), pp. 114–121.
  48. J. Crank, The Mathematics of Diffusion (Oxford U.P., London, 1956).
  49. National Academy of Sciences, International Chemical Tables of Numerical Data, Physics, Chemistry & Technology (McGraw-Hill, New York, 1933).

1990

1989

C. C. Davis, “Building Small, Extremely Sensitive Practical Laser Interferometers for Sensor Application,” Nucl. Phys. B. 6, 290–297 (1989).
[CrossRef]

J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
[CrossRef]

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
[CrossRef]

1988

J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988).
[CrossRef] [PubMed]

J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
[CrossRef]

1985

G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
[CrossRef]

C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985).
[CrossRef]

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

1984

L. T. Molina, W. B. Grant, “FTIR-Spectrometer-Determined Absorption Coefficients of Seven Hydrazine Fuel Gases: Implications for Laser Remote Sensing,” Appl. Opt. 23, 3893–3900 (1984).
[CrossRef] [PubMed]

G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

1983

1982

1981

C. C. Davis, S. J. Petuchowski, “Phase Fluctuation Optical Heterodyne Spectroscopy of Gases,” Appl. Opt. 20, 2539–2554 (1981); Errata, 20, 4151–4151 (1981).
[CrossRef] [PubMed]

E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981).
[CrossRef]

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).

1980

1978

G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978).
[CrossRef]

1977

C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[CrossRef]

1974

F. Karasek, “Plasma Chromatography,” Anal. Chem. 46, 710A–720A (1974).

1973

T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
[CrossRef]

1972

J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
[CrossRef]

F. Karasek, “Trace Analysis and Fundamental Studies by Plasma Chromatography,” Int. J. Environ. Anal. Chem. 2, 157–166 (1972).
[CrossRef] [PubMed]

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

1961

B. M. Oliver, “Signal-to-Noise Ratios in Photoelectric Mixing,” Proc. IRE 49, 1960 (1961).

1946

R. H. Dicke, “The Measurement of Thermal Radiation at Microwave Frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

Abbas, G. L.

Ahl, J. L.

J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
[CrossRef]

Amer, N. M.

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

Andersson, K.

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

Barger, W. R.

J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
[CrossRef]

Beck, S. M.

G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
[CrossRef]

Bernegger, S.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
[CrossRef]

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989).
[CrossRef]

Boccara, A. C.

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

Boettger, H. G.

J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
[CrossRef]

Calloway, A. R.

Campbell, D. N.

G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).

Campillo, A. J.

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

A. J. Campillo, H-B Lin, C. J. Dodge, C. C. Davis, “Stark-Effect-Modulated Phase-Fluctuation Optical Heterodyne Interferometer for Trace-Gas Analysis,” Opt. Lett. 5, 424–426 (1980).
[CrossRef] [PubMed]

Chan, V. W. S.

Crank, J.

J. Crank, The Mathematics of Diffusion (Oxford U.P., London, 1956).

Davis, C. C.

C. C. Davis, “Building Small, Extremely Sensitive Practical Laser Interferometers for Sensor Application,” Nucl. Phys. B. 6, 290–297 (1989).
[CrossRef]

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

C. C. Davis, S. J. Petuchowski, “Phase Fluctuation Optical Heterodyne Spectroscopy of Gases,” Appl. Opt. 20, 2539–2554 (1981); Errata, 20, 4151–4151 (1981).
[CrossRef] [PubMed]

A. J. Campillo, H-B Lin, C. J. Dodge, C. C. Davis, “Stark-Effect-Modulated Phase-Fluctuation Optical Heterodyne Interferometer for Trace-Gas Analysis,” Opt. Lett. 5, 424–426 (1980).
[CrossRef] [PubMed]

DeFeo, W. E.

Dicke, R. H.

R. H. Dicke, “The Measurement of Thermal Radiation at Microwave Frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

Dodge, C. J.

Eiceman, G. A.

C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985).
[CrossRef]

Faxvog, F. R.

Fiala, E. S.

E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981).
[CrossRef]

Fine, D. H.

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

Fournier, D.

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

Fox, J. A.

J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
[CrossRef]

Gautier, C. R.

J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
[CrossRef]

Gelbwachs, J. A.

G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
[CrossRef]

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726–2734 (1980).
[CrossRef] [PubMed]

Gerlach, R.

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

Grant, W. B.

Grate, J. W.

J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
[CrossRef]

Gungor, A.

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Hallgren, C.

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

Hannum, J. A. E.

J. A. E. Hannum, “Recent Developments in the Toxicology of Propellant Hydrazines,” Chemical Propulsion Information Agency, CPTR 82-15 (June1982).

Harris, J. M.

N. J. Novichi, J. M. Harris, “Differential Thermal Lens Calorimetry,” Anal. Chem. 52, 2338–2342 (1980).
[CrossRef]

Ho, P-T.

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Holtzclaw, J. R.

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

Jenkins, T. F.

T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
[CrossRef]

Karasek, F.

F. Karasek, “Plasma Chromatography,” Anal. Chem. 46, 710A–720A (1974).

F. Karasek, “Trace Analysis and Fundamental Studies by Plasma Chromatography,” Int. J. Environ. Anal. Chem. 2, 157–166 (1972).
[CrossRef] [PubMed]

Kerl, R. J.

C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[CrossRef]

Killinger, D. K.

Kulakis, C.

E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981).
[CrossRef]

Lawless, P.

G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978).
[CrossRef]

Leasure, C. S.

C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985).
[CrossRef]

Lee, W-K.

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

Leggett, D. C.

T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
[CrossRef]

Levin, J-O.

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

Lin, H-B

Lin, H-B.

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

Loper, G. L.

G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
[CrossRef]

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648–1653 (1982).
[CrossRef] [PubMed]

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726–2734 (1980).
[CrossRef] [PubMed]

Menyuk, N.

Meyer, P. L.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
[CrossRef]

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989).
[CrossRef]

Mocker, H. W.

Molina, L. T.

Murrmann, R. P.

T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
[CrossRef]

Nilsson, C-A.

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

Novichi, N. J.

N. J. Novichi, J. M. Harris, “Differential Thermal Lens Calorimetry,” Anal. Chem. 52, 2338–2342 (1980).
[CrossRef]

Oliver, B. M.

B. M. Oliver, “Signal-to-Noise Ratios in Photoelectric Mixing,” Proc. IRE 49, 1960 (1961).

Patel, C. K. M.

C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[CrossRef]

Petuchowski, S. J.

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

C. C. Davis, S. J. Petuchowski, “Phase Fluctuation Optical Heterodyne Spectroscopy of Gases,” Appl. Opt. 20, 2539–2554 (1981); Errata, 20, 4151–4151 (1981).
[CrossRef] [PubMed]

Rose, S. L.

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

Rose-Pehrsson, S.

J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
[CrossRef]

Rounbehler, D. P.

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

Sasaki, G. R.

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648–1653 (1982).
[CrossRef] [PubMed]

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).

Sevin, I. F.

I. F. Sevin, “Criteria for a Recommended Standard—Occupational Exposure to Hydrazines,” Division of Criteria Documentation and Standards Development, U.S. Dept. of Health, Education, and Welfare, NIOSH Publ. 78-172 (June1978), p. 280.

Sigrist, M. W.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
[CrossRef]

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989).
[CrossRef]

M. W. Sigrist, “Atmospheric Trace Gas Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, Eds. (Springer-Verlag, Berlin, 1988), pp. 114–121.

Spangler, G. E.

G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).

G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978).
[CrossRef]

Stamps, M. A.

Stone, D. A.

D. A. Stone, “Auto-Oxidation of Hydrazine Vapor,” U.S. Air Force Syst. Comm. Cir. Env. Eng. Dev. Off. Rep. CEEDO-TR-78-19, NTIS No. AD-A055467 (NTIS, Springfield, VA, 1978).

Taha, Z.

J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988).
[CrossRef] [PubMed]

Tam, A. C.

A. C. Tam, “Photoacoustics: Spectroscopy and Other Applications,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), pp. 1–108.

Vora, K. N.

G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).

Wang, J.

J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988).
[CrossRef] [PubMed]

Weber, W. P.

J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
[CrossRef]

Willet, J.

J. Willet, Gas Chromatography (Wiley, Chichester, U.K., 1987).

Wyatt, J. R.

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

Yee, T. K.

Yinon, J.

J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
[CrossRef]

Yuen, H. P.

Anal. Chem.

K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984).
[CrossRef]

J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984).
[CrossRef] [PubMed]

F. Karasek, “Plasma Chromatography,” Anal. Chem. 46, 710A–720A (1974).

C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985).
[CrossRef]

G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978).
[CrossRef]

J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972).
[CrossRef]

N. J. Novichi, J. M. Harris, “Differential Thermal Lens Calorimetry,” Anal. Chem. 52, 2338–2342 (1980).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972).
[CrossRef]

W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985).
[CrossRef]

C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977).
[CrossRef]

A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982).
[CrossRef]

Can. J. Phys.

G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985).
[CrossRef]

Infrared Phys.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989).
[CrossRef]

Int. J. Environ. Anal. Chem.

F. Karasek, “Trace Analysis and Fundamental Studies by Plasma Chromatography,” Int. J. Environ. Anal. Chem. 2, 157–166 (1972).
[CrossRef] [PubMed]

ISA Trans.

G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).

J. Chem. Eng. Data

T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973).
[CrossRef]

J. Chromatogr.

E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981).
[CrossRef]

Langmuir

J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988).
[CrossRef]

Nucl. Phys. B.

C. C. Davis, “Building Small, Extremely Sensitive Practical Laser Interferometers for Sensor Application,” Nucl. Phys. B. 6, 290–297 (1989).
[CrossRef]

Opt. Lett.

Proc. IRE

B. M. Oliver, “Signal-to-Noise Ratios in Photoelectric Mixing,” Proc. IRE 49, 1960 (1961).

Proc. Soc. Photo-Opt. Instrum. Eng.

G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).

Rev. Sci. Instrum.

R. H. Dicke, “The Measurement of Thermal Radiation at Microwave Frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989).
[CrossRef]

Talanta

J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988).
[CrossRef] [PubMed]

Other

M. Shaw, Ed., Technical Information Data Sheet on HCl, HCN and Hydrazine Analyzers (Interscan Corp., P.O. Box 2496, Chatsworth, CA 91313-2496, 1990).

I. F. Sevin, “Criteria for a Recommended Standard—Occupational Exposure to Hydrazines,” Division of Criteria Documentation and Standards Development, U.S. Dept. of Health, Education, and Welfare, NIOSH Publ. 78-172 (June1978), p. 280.

John V. Crable, Ed., NIOSH Manual of Analytical Techniques, Edition 2, DHEW (NIOSH) Publ. No. 77-157-C (1984).

J. A. E. Hannum, “Recent Developments in the Toxicology of Propellant Hydrazines,” Chemical Propulsion Information Agency, CPTR 82-15 (June1982).

Technical Information Data on Toxic Gas Monitors (MDA Scientific, Inc., 405 Barclay Blvd., Lincolnshire, IL 60069.

“EVIS Electronic Vibration Isolation System,” in Technical Data Information (Newport Corp., P.O. Box 8020, 18235 Mt. Baldy Circle, Fountain Valley, CA 92728-8020, 1989).

M. W. Sigrist, “Atmospheric Trace Gas Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, Eds. (Springer-Verlag, Berlin, 1988), pp. 114–121.

J. Crank, The Mathematics of Diffusion (Oxford U.P., London, 1956).

National Academy of Sciences, International Chemical Tables of Numerical Data, Physics, Chemistry & Technology (McGraw-Hill, New York, 1933).

R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, The Netherlands, 1987).
[CrossRef]

D. A. Stone, “Auto-Oxidation of Hydrazine Vapor,” U.S. Air Force Syst. Comm. Cir. Env. Eng. Dev. Off. Rep. CEEDO-TR-78-19, NTIS No. AD-A055467 (NTIS, Springfield, VA, 1978).

J. Willet, Gas Chromatography (Wiley, Chichester, U.K., 1987).

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989).
[CrossRef]

A. C. Tam, “Photoacoustics: Spectroscopy and Other Applications,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), pp. 1–108.

P. Hess, J. Pelzl, Eds., Photoacoustic and Photothermal Phenomena (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Trace gas detection system: BS1 and BS2, beam splitting etalons; PZT, piezoelectric transducer; ADIC, analog–digital interface circuit; BDIC, PC bus decoding interface circuit.

Fig. 2
Fig. 2

Linearity results for methanol.

Fig. 3
Fig. 3

Strong photothermal absorption lines for hydrazine.

Fig. 4
Fig. 4

Strong photothermal absorption lines for UDMH.

Fig. 5
Fig. 5

Strong photothermal absorption lines for MMH.

Fig. 6
Fig. 6

Strong photothermal absorption lines for methanol.

Fig. 7
Fig. 7

Spectrum analyzer trace showing a high signal-to-noise ratio for the detection of 1 ppm of hydrazine in 1 atm of nitrogen. The CO2 laser was operating on the 10P22 line at a power of 2.2 W chopped at 85 Hz.

Fig. 8
Fig. 8

Diffusion results for 3.5 μliter of hydrazine.

Tables (1)

Tables Icon

Table I Signal Voltage (Per Watt of CO2 Power) for Various Materials at Concentrations of 100 ppm Buffered to 1 atm with N2

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

i 1 = A 1 i 1 = K 1 ( e η h ν ) { P s 2 + P r 2 + P s P r cos [ ϕ s ϕ r + δ ϕ ( t ) ] } , i 2 = A 2 i 2 = K 2 ( e η h ν ) { P s 2 + P r 2 P s P r cos [ ϕ s ϕ r + δ ϕ ( t ) ] } ,
i s = i 1 i 2 = ( e η h ν ) P o δ ϕ ( t ) ,
SNR = i s 2 ¯ i N 2 ¯ = ( e η h ν ) 2 P o 2 δ ϕ 2 ¯ 2 e ( i 1 + i 2 ) Δ f = P o 2 η h ν 1 Δ f δ ϕ 2 ¯ .
δ ϕ ( t ) min = 2 h ν Δ f η P o .
Δ n ( t ) = ( n 1 ) Δ T T abs ,
δ ϕ ( t ) = 2 π l λ Δ n ( t ) .
δ ϕ ( t ) = 2 π l λ ( n 1 ) Δ T T abs ,
Δ T = P I α l ρ V C p δ t ,
Δ T = α P I 4 π a 2 ρ C p f .
δ ϕ ( t ) = 2 π l λ ( n 1 ) T abs α P I 4 π a 2 ρ C p f .
α min = 2 a 2 ρ C p f λ T abs ( n 1 ) l P I 2 h ν Δ f η P o .
C = M 8 ( π D t ) exp ( r 2 / 4 D t ) ,

Metrics