## Abstract

A holographic interferometry technique for the measurement of optical glass homogeneity of plate samples is presented. It is shown that this immersion technique is more accurate than methods used for this purpose based on classical interferometry without the need of quality optics.

© 1991 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$O{P}_{1}=2\left({N}^{\prime}{{T}^{\prime}}_{1}+N{t}_{1}\right),$$
(2)
$$O{P}_{2}=2\left({N}^{\prime}{{T}^{\prime}}_{2}+N{t}_{2}+\delta N\delta \tau \right),$$
(3)
$${{T}^{\prime}}_{2}={{T}^{\prime}}_{1}\pm \delta {T}_{1}\pm \delta {T}_{2}\pm \delta {t}_{1}\pm \delta {t}_{2}.$$
(4)
$${T}_{2}={T}_{1}\mp \delta {t}_{1}\mp \delta {t}_{2}.$$
(5)
$$\begin{array}{r}O{P}_{2}-O{P}_{1}=2[\left(N+\Delta N\right)\left(\pm \delta {t}_{1}\pm \delta {t}_{2}\right)+{N}^{\prime}\left(\pm \delta {T}_{1}\pm \delta {T}_{2}\right)\\ +\delta N\delta \tau +N\left(\mp \delta {t}_{1}\mp \delta {t}_{2}\right)].\end{array}$$
(6)
$$O{P}_{2}-O{P}_{1}=2\left(2\Delta N\delta t+2{N}^{\prime}\delta T+\delta Ns\delta \tau \right).$$
(7)
$${L}_{1}={L}_{0}+{N}^{\prime}T+Nt,$$
(8)
$${L}_{2}={L}_{0}+{N}^{\prime}\left(T\mp \delta t\right)+N\left(t\pm \delta t\right)+\delta N\delta \tau .$$
(9)
$$\text{DCO}=\Delta N\delta t+\delta N\delta \tau .$$