Abstract

A variable-ratio tap is developed by changing the bending radius of a plastic optical fiber. When a plastic fiber is bent over a small radius, the core modes of the fiber are converted into the cladding modes, which can be extracted through material having a suitable refractive index. The transmission characteristics of the variable-ratio tap are investigated using the ray tracing technique governing the quasiskew rays propagating through a multimode fiber.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Aoyagi, “Recent Developments in Plastic Optical Fibers and Applications for Automotive Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 840, 10–18 (1987).
  2. M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
    [Crossref]
  3. M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
    [Crossref]
  4. S. Kawakami, “Mode Conversion Losses of Randomly Bent, Singly and Doubly Clad Waveguides for Single Mode Transmission,” Appl. Opt. 15, 2778–2784 (1976).
    [Crossref] [PubMed]
  5. W. A. Gambling, H. Matsumura, “Propagation Characteristics of Curved Optical Fibers,” Trans. IECE Jpn. E61, 196–201 (1978).
  6. Y.-F. Li, J. W. Y. Lit, “Transmission Properties of a Multimode Optical-Fiber Taper,” J. Opt. Soc. Am. A 2, 462–468 (1985).
    [Crossref]

1988 (1)

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

1987 (1)

T. Aoyagi, “Recent Developments in Plastic Optical Fibers and Applications for Automotive Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 840, 10–18 (1987).

1986 (1)

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

1985 (1)

1978 (1)

W. A. Gambling, H. Matsumura, “Propagation Characteristics of Curved Optical Fibers,” Trans. IECE Jpn. E61, 196–201 (1978).

1976 (1)

Aoyagi, T.

T. Aoyagi, “Recent Developments in Plastic Optical Fibers and Applications for Automotive Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 840, 10–18 (1987).

Gambling, W. A.

W. A. Gambling, H. Matsumura, “Propagation Characteristics of Curved Optical Fibers,” Trans. IECE Jpn. E61, 196–201 (1978).

Ishikawa, M.

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

Ito, T.

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

Kagami, M.

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

Kawakami, S.

Li, Y.-F.

Lit, J. W. Y.

Matsumura, H.

W. A. Gambling, H. Matsumura, “Propagation Characteristics of Curved Optical Fibers,” Trans. IECE Jpn. E61, 196–201 (1978).

Nakanishi, T.

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

Ohba, Y.

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

Okada, H.

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

Sakai, Y.

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

Sugawara, H.

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

Yamamoto, M.

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, T. Nakanishi, “Room-Temperature cw Operation of InGaP/InGaAIP Visible Light Laser Diodes on GaAs Substrates Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 48, 207–208 (1986).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. Kagami, Y. Sakai, H. Okada, T. Ito, “Plastic Optical Fiber Tap,” Opt. Eng. 27, 978–984 (1988).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

T. Aoyagi, “Recent Developments in Plastic Optical Fibers and Applications for Automotive Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 840, 10–18 (1987).

Trans. IECE Jpn. (1)

W. A. Gambling, H. Matsumura, “Propagation Characteristics of Curved Optical Fibers,” Trans. IECE Jpn. E61, 196–201 (1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the VR tap for plastic optical fiber. Port 1 is the input, ports 2 and 3 are the output of the bus fiber and tap fiber, respectively.

Fig. 2
Fig. 2

Geometrical schematic representation of the bend of the bus fiber. The curvature of the bus fiber varies from Ro to Re due to the external force of the push-rod.

Fig. 3
Fig. 3

Tap ratio as a function of the bending radius Re for the VR tap and FR taps.

Fig. 4
Fig. 4

Variation of the bending loss of the bus fiber vs bending radius for a parabolic curvature of VR tap and uniform curvature of the FR taps.

Fig. 5
Fig. 5

Excess loss as a function of the bending radius for the VR tap and FR taps.

Fig. 6
Fig. 6

Insertion loss as a function of the tap ratio for the VR tap.

Fig. 7
Fig. 7

Modal field width of rays remaining in the bus fiber and of coupled rays to the tap fiber as a function of the bending radius for the VR tap.

Fig. 8
Fig. 8

Schematic representation of the mode transition region.

Fig. 9
Fig. 9

Far field patterns of the steady state mode from POF. Mode distribution of (a) two dimension and (b) one dimension (meridional rays).

Fig. 10
Fig. 10

Tap ratio as a function of the bending radius. The solid lines are calculated using the ray tracing of meridional rays and quasiskew rays. The points denote experimental values.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Re = R o ( 1 cos 2 θ h ) χ cos θ h 1 cos θ h ,
tap ratio = 10 log P 13 P 12 ,
excess loss = 10 log P 12 + P 13 P 0 ,
insertion loss = 10 log P 12 P 0 .
sin ϕ = ( R + d 2 + h ) cos θ f R + d ,
C c = d / 2 d / 2 0 π / 2 M m ( θ f ) u ( ϕ ϕ c ) d θ f d h d / 2 d / 2 d h π / 2 π / 2 u ( θ f ) d θ f ,
u ( t ) = { 0 ( t < 0 ) , 1 / 2 ( t = 0 ) , 1 ( t > 0 ) .
N . A . m 2 = n 1 2 n 2 2 ,
N . A . s 2 = 1 2 π { [ N . A . m 2 ( 1 N . A . m 2 ) ] 1 / 2 + ( 1 2 N . A . m 2 ) cos 1 ( N . A . m ) } .
M s ( θ f ) = M m ( θ f · N . A . s / N . A . m ) .

Metrics