Abstract

An experiment to measure the polarization of land, sea, haze, and cloud areas from space was carried aboard the Space Shuttle in Sept. 1985. Digitized polarimetric and photometric imagery in mutually perpendicular planes was derived in the red, green, and blue spectral regions from photographs taken with two synchronized Hasselblad cameras using type 5036 Ektachrome film. Digitization at the NASA Houston Video Digital Analysis Systems Laboratory permitted reduction of the imagery into equipolarimetric contours with a relative accuracy of ±20% for comparison to ground truth. The Island of Hawaii and adjacent sea and cloud areas were the objects of the specific imagery analyzed. Results show that cloud development is uniquely characterized using percent polarization without requiring precision photometric calibration. Furthermore, sea state and wind direction over the sea could be inferred as well as terrestrial soil texture.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lyot, “Research on the Polarization of Light from Planets and Some Substances,” Ann. Observatoire de Paris, Section de Meudon, VIII, No. 1 (1929); NASA Tech. Transl. TTF-187 (1964).
  2. A. Dollfus, “Polarization de la lumière renvoyée par les corps solides et les nuages naturels,” Ann. Astrophys. 19, 83–113 (1956).
  3. W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985).
  4. D. Deirmendjian, “Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared;” Appl. Opt. 3, 187–196 (1964).
    [CrossRef]
  5. F. F. Hall, “The Polarized Emissivity of Water in the Infrared,” Appl. Opt. 3, 781–782 (1964).
    [CrossRef]
  6. R. S. Fraser, “Apparent Contrast of Objects on the Earth’s Surface as Seen from Above the Earth’s Atmosphere,” J. Opt. Soc. Am. 54, 289–300 (1964).
    [CrossRef]
  7. K. L. Coulson, “Effects of Reflection Properties of Natural Surfaces in Aerial Reconnaissance,” Appl. Opt. 5, 905–917 (1966).
    [CrossRef] [PubMed]
  8. W. G. Egan, “Aircraft Polarimetric and Photometric Observations,” in Proceedings, Fifth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1968), pp. 169–189.
  9. J. V. Dave, “Intensity and Polarization of the Radiation Emerging from a Plane-Parallel Atmosphere Containing Monodispersed Aerosols,” Appl. Opt. 9, 2673–2684 (1970).
    [CrossRef] [PubMed]
  10. J. E. Hansen, “Multiple Scattering of Polarized Light in Planetary Atmospheres. Part II. Sunlight Reflected by Terrestrial Water Clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
    [CrossRef]
  11. J. E. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  12. G. W. Kattawar, G. N. Plass, “Degree and Direction of Polarization of Multiple Scattered Light. 1: Homogeneous Cloud Layers,” Appl. Opt. 11, 2851–2865 (1972).
    [CrossRef] [PubMed]
  13. G. W. Kattawar, G. N. Plass, F. E. Catchings, “Matrix Operator Theory of Radiative Transfer. 2: Scattering from Maritime Haze,” Appl. Opt. 12, 1071–1084 (1973).
    [CrossRef] [PubMed]
  14. G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere Ocean System,” J. Phys. Ocean. 3, 353–372 (1973).
    [CrossRef]
  15. G. W. Kattawar, G. N. Plass, “Asymptotic Radiance and Polarization in Optically Thick Media: Ocean and Clouds,” Appl. Opt. 15, 3166–3178 (1976).
    [CrossRef] [PubMed]
  16. C. N. Adams, G. N. Plass, G. W. Kattawar, “The Influence of Ozone and Aerosols on the Brightness and Color of the Twilight Sky,” J. Atmos. Sci. 31, 1661–1674 (1974).
    [CrossRef]
  17. K-N Liou, “Electromagnetic Scattering by Arbitrarily Oriented Ice Cylinders,” Appl. Opt. 11, 667–674 (1972).
    [CrossRef] [PubMed]
  18. K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
    [CrossRef] [PubMed]
  19. K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
    [CrossRef] [PubMed]
  20. T. Takashima, K. Masuda, “Degree of Radiance and Polarization of the Upwelling Radiation from an Atmosphere–Ocean System,” Appl. Opt. 24, 2423–2429 (1985).
    [CrossRef] [PubMed]
  21. K. Masuda, T. Takashima, “Dependence of the Radiation Just Above and Below the Ocean Surface on Atmospheric and Oceanic Parameters,” Appl. Opt. 27, 4891–4898 (1988).
    [CrossRef] [PubMed]
  22. G. F. J. Garlick, G. A. Steigman, U.K. Patent1,7,854 and G. F. J. Garlick, G. A. Steigman, U.S. Patent3,992,571, U. Hull, England (1976).
  23. M. D. Buchanan, R. Pendergrass, “Digital Image Processing,” Electro. Opt. Syst. Des.29–36 (Mar.1980).
  24. T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
    [CrossRef] [PubMed]
  25. W. G. Egan, “Proposed Design of an Imaging Spectropolarimeter/Photometer for Remote Sensing of Earth Resources,” Opt. Eng. 25, 1155–1159 (1986).
    [CrossRef]
  26. K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).
  27. V. S. Whitehead, K. L. Coulson, “Remote Sensing in Polarized Light,” NASA Conf. Publ. 3014 (1988).
  28. W. G. Egan, V. S. Whitehead, “Theoretical Basis and Significance of Polarization in Remote Sensing,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).
  29. W. G. Egan, V. S. Whitehead, “Polarization Imagery Obtained from the Space Shuttle,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).
  30. W. G. Egan, V. S. Whitehead, “Polarization Imagery of Terrestrial Areas Obtained During Space Shuttle Missions,” in IRS ’88: Current Problems in Atmospheric Radiation (Deepak, Hampton, VA, 1989), pp. 561–563.
  31. V. S. Whitehead, W. G. Egan, “Analysis of Terrestrial Polarization Imagery Obtained from the Space Shuttle,” Trans. Am. Geophys. Union 70, 301 (1989).
  32. Y. Kawata, “Circular Polarization of Sunlight Reflected by Planetary Atmospheres,” Icarus 33, 217–232 (1978).
    [CrossRef]
  33. M. Sidran, “Broadband Reflectance and Emissivity of Specular and Rough Water Surfaces,” Appl. Opt. 20, 3176–3183 (1981).
    [CrossRef] [PubMed]
  34. C. Cox, W. Munk, “Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  35. K. L. Coulson, “Effects of the El Chichon Volcanic Cloud in the Stratosphere on the Polarization of Light from the Sky,” Appl. Opt. 22, 1036–1050 (1983).
    [CrossRef] [PubMed]
  36. W. G. Egan, “Optical Sky Polarimetry and Photometry at Mauna Loa Observatory Affected by Stratospheric Dust from El Chichon,” Appl. Opt. 23, 1013–1020 (1984).
    [CrossRef] [PubMed]
  37. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, VA, 1988).
  38. W. G. Egan, A. W. Hogan, “Meteorological Variation of Atmospheric Optical Properties in an Antarctic Storm,” Appl. Opt. 25, 1155–1165 (1986).
    [CrossRef] [PubMed]

1989 (1)

V. S. Whitehead, W. G. Egan, “Analysis of Terrestrial Polarization Imagery Obtained from the Space Shuttle,” Trans. Am. Geophys. Union 70, 301 (1989).

1988 (1)

1986 (3)

W. G. Egan, A. W. Hogan, “Meteorological Variation of Atmospheric Optical Properties in an Antarctic Storm,” Appl. Opt. 25, 1155–1165 (1986).
[CrossRef] [PubMed]

W. G. Egan, “Proposed Design of an Imaging Spectropolarimeter/Photometer for Remote Sensing of Earth Resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).

1985 (2)

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

T. Takashima, K. Masuda, “Degree of Radiance and Polarization of the Upwelling Radiation from an Atmosphere–Ocean System,” Appl. Opt. 24, 2423–2429 (1985).
[CrossRef] [PubMed]

1984 (1)

1983 (3)

K. L. Coulson, “Effects of the El Chichon Volcanic Cloud in the Stratosphere on the Polarization of Light from the Sky,” Appl. Opt. 22, 1036–1050 (1983).
[CrossRef] [PubMed]

T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
[CrossRef] [PubMed]

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

1981 (1)

M. Sidran, “Broadband Reflectance and Emissivity of Specular and Rough Water Surfaces,” Appl. Opt. 20, 3176–3183 (1981).
[CrossRef] [PubMed]

1978 (1)

Y. Kawata, “Circular Polarization of Sunlight Reflected by Planetary Atmospheres,” Icarus 33, 217–232 (1978).
[CrossRef]

1976 (1)

1974 (2)

C. N. Adams, G. N. Plass, G. W. Kattawar, “The Influence of Ozone and Aerosols on the Brightness and Color of the Twilight Sky,” J. Atmos. Sci. 31, 1661–1674 (1974).
[CrossRef]

J. E. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1973 (2)

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere Ocean System,” J. Phys. Ocean. 3, 353–372 (1973).
[CrossRef]

G. W. Kattawar, G. N. Plass, F. E. Catchings, “Matrix Operator Theory of Radiative Transfer. 2: Scattering from Maritime Haze,” Appl. Opt. 12, 1071–1084 (1973).
[CrossRef] [PubMed]

1972 (2)

1971 (1)

J. E. Hansen, “Multiple Scattering of Polarized Light in Planetary Atmospheres. Part II. Sunlight Reflected by Terrestrial Water Clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

1970 (1)

1966 (1)

1964 (3)

1956 (1)

A. Dollfus, “Polarization de la lumière renvoyée par les corps solides et les nuages naturels,” Ann. Astrophys. 19, 83–113 (1956).

1954 (1)

1929 (1)

B. Lyot, “Research on the Polarization of Light from Planets and Some Substances,” Ann. Observatoire de Paris, Section de Meudon, VIII, No. 1 (1929); NASA Tech. Transl. TTF-187 (1964).

Adams, C. N.

C. N. Adams, G. N. Plass, G. W. Kattawar, “The Influence of Ozone and Aerosols on the Brightness and Color of the Twilight Sky,” J. Atmos. Sci. 31, 1661–1674 (1974).
[CrossRef]

Buchanan, M. D.

M. D. Buchanan, R. Pendergrass, “Digital Image Processing,” Electro. Opt. Syst. Des.29–36 (Mar.1980).

Cai, Q.

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

Campbell, C.

K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).

Catchings, F. E.

Coulson, K. L.

K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).

K. L. Coulson, “Effects of the El Chichon Volcanic Cloud in the Stratosphere on the Polarization of Light from the Sky,” Appl. Opt. 22, 1036–1050 (1983).
[CrossRef] [PubMed]

K. L. Coulson, “Effects of Reflection Properties of Natural Surfaces in Aerial Reconnaissance,” Appl. Opt. 5, 905–917 (1966).
[CrossRef] [PubMed]

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, VA, 1988).

V. S. Whitehead, K. L. Coulson, “Remote Sensing in Polarized Light,” NASA Conf. Publ. 3014 (1988).

Cox, C.

Cuzzi, J. N.

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

Dave, J. V.

Deirmendjian, D.

Dollfus, A.

A. Dollfus, “Polarization de la lumière renvoyée par les corps solides et les nuages naturels,” Ann. Astrophys. 19, 83–113 (1956).

Egan, W. G.

V. S. Whitehead, W. G. Egan, “Analysis of Terrestrial Polarization Imagery Obtained from the Space Shuttle,” Trans. Am. Geophys. Union 70, 301 (1989).

W. G. Egan, A. W. Hogan, “Meteorological Variation of Atmospheric Optical Properties in an Antarctic Storm,” Appl. Opt. 25, 1155–1165 (1986).
[CrossRef] [PubMed]

W. G. Egan, “Proposed Design of an Imaging Spectropolarimeter/Photometer for Remote Sensing of Earth Resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

W. G. Egan, “Optical Sky Polarimetry and Photometry at Mauna Loa Observatory Affected by Stratospheric Dust from El Chichon,” Appl. Opt. 23, 1013–1020 (1984).
[CrossRef] [PubMed]

W. G. Egan, V. S. Whitehead, “Polarization Imagery Obtained from the Space Shuttle,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

W. G. Egan, “Aircraft Polarimetric and Photometric Observations,” in Proceedings, Fifth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1968), pp. 169–189.

W. G. Egan, V. S. Whitehead, “Theoretical Basis and Significance of Polarization in Remote Sensing,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985).

W. G. Egan, V. S. Whitehead, “Polarization Imagery of Terrestrial Areas Obtained During Space Shuttle Missions,” in IRS ’88: Current Problems in Atmospheric Radiation (Deepak, Hampton, VA, 1989), pp. 561–563.

Fraser, R. S.

Garlick, G. F. J.

G. F. J. Garlick, G. A. Steigman, U.K. Patent1,7,854 and G. F. J. Garlick, G. A. Steigman, U.S. Patent3,992,571, U. Hull, England (1976).

Griffen, M.

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

Guinn, J. A.

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere Ocean System,” J. Phys. Ocean. 3, 353–372 (1973).
[CrossRef]

Hall, F. F.

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

J. E. Hansen, “Multiple Scattering of Polarized Light in Planetary Atmospheres. Part II. Sunlight Reflected by Terrestrial Water Clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

Hennings, D.

T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
[CrossRef] [PubMed]

Hogan, A. W.

Kattawar, G. W.

Kawata, Y.

Y. Kawata, “Circular Polarization of Sunlight Reflected by Planetary Atmospheres,” Icarus 33, 217–232 (1978).
[CrossRef]

Kinne, S.

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

Liou, K-N

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

K-N Liou, “Electromagnetic Scattering by Arbitrarily Oriented Ice Cylinders,” Appl. Opt. 11, 667–674 (1972).
[CrossRef] [PubMed]

Lyot, B.

B. Lyot, “Research on the Polarization of Light from Planets and Some Substances,” Ann. Observatoire de Paris, Section de Meudon, VIII, No. 1 (1929); NASA Tech. Transl. TTF-187 (1964).

Masuda, K.

Munk, W.

Pendergrass, R.

M. D. Buchanan, R. Pendergrass, “Digital Image Processing,” Electro. Opt. Syst. Des.29–36 (Mar.1980).

Plass, G. N.

Pollack, J. B.

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

Prosch, T.

T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
[CrossRef] [PubMed]

Raschke, E.

T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
[CrossRef] [PubMed]

Sassen, K.

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

Sidran, M.

M. Sidran, “Broadband Reflectance and Emissivity of Specular and Rough Water Surfaces,” Appl. Opt. 20, 3176–3183 (1981).
[CrossRef] [PubMed]

Steigman, G. A.

G. F. J. Garlick, G. A. Steigman, U.K. Patent1,7,854 and G. F. J. Garlick, G. A. Steigman, U.S. Patent3,992,571, U. Hull, England (1976).

Takashima, T.

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Whitehead, V. S.

V. S. Whitehead, W. G. Egan, “Analysis of Terrestrial Polarization Imagery Obtained from the Space Shuttle,” Trans. Am. Geophys. Union 70, 301 (1989).

K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).

W. G. Egan, V. S. Whitehead, “Polarization Imagery of Terrestrial Areas Obtained During Space Shuttle Missions,” in IRS ’88: Current Problems in Atmospheric Radiation (Deepak, Hampton, VA, 1989), pp. 561–563.

W. G. Egan, V. S. Whitehead, “Theoretical Basis and Significance of Polarization in Remote Sensing,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

W. G. Egan, V. S. Whitehead, “Polarization Imagery Obtained from the Space Shuttle,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

V. S. Whitehead, K. L. Coulson, “Remote Sensing in Polarized Light,” NASA Conf. Publ. 3014 (1988).

Ann. Observatoire de Paris, Section de Meudon (1)

B. Lyot, “Research on the Polarization of Light from Planets and Some Substances,” Ann. Observatoire de Paris, Section de Meudon, VIII, No. 1 (1929); NASA Tech. Transl. TTF-187 (1964).

Ann. Astrophys. (1)

A. Dollfus, “Polarization de la lumière renvoyée par les corps solides et les nuages naturels,” Ann. Astrophys. 19, 83–113 (1956).

Appl. Opt. (4)

K-N Liou, “Electromagnetic Scattering by Arbitrarily Oriented Ice Cylinders,” Appl. Opt. 11, 667–674 (1972).
[CrossRef] [PubMed]

K-N Liou, Q. Cai, J. B. Pollack, J. N. Cuzzi, “Light Scattering by Randomly Oriented Cubes and Parallelepipids,” Appl. Opt. 22, 3001–3008 (1983).
[CrossRef] [PubMed]

T. Prosch, D. Hennings, E. Raschke, “Video Polarimetry: a New Imaging Technique in Atmospheric Science,” Appl. Opt. 22, 1360–1363 (1983).
[CrossRef] [PubMed]

M. Sidran, “Broadband Reflectance and Emissivity of Specular and Rough Water Surfaces,” Appl. Opt. 20, 3176–3183 (1981).
[CrossRef] [PubMed]

Appl. Opt. (12)

F. F. Hall, “The Polarized Emissivity of Water in the Infrared,” Appl. Opt. 3, 781–782 (1964).
[CrossRef]

D. Deirmendjian, “Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared;” Appl. Opt. 3, 187–196 (1964).
[CrossRef]

K. L. Coulson, “Effects of Reflection Properties of Natural Surfaces in Aerial Reconnaissance,” Appl. Opt. 5, 905–917 (1966).
[CrossRef] [PubMed]

J. V. Dave, “Intensity and Polarization of the Radiation Emerging from a Plane-Parallel Atmosphere Containing Monodispersed Aerosols,” Appl. Opt. 9, 2673–2684 (1970).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, “Degree and Direction of Polarization of Multiple Scattered Light. 1: Homogeneous Cloud Layers,” Appl. Opt. 11, 2851–2865 (1972).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, F. E. Catchings, “Matrix Operator Theory of Radiative Transfer. 2: Scattering from Maritime Haze,” Appl. Opt. 12, 1071–1084 (1973).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, “Asymptotic Radiance and Polarization in Optically Thick Media: Ocean and Clouds,” Appl. Opt. 15, 3166–3178 (1976).
[CrossRef] [PubMed]

K. L. Coulson, “Effects of the El Chichon Volcanic Cloud in the Stratosphere on the Polarization of Light from the Sky,” Appl. Opt. 22, 1036–1050 (1983).
[CrossRef] [PubMed]

W. G. Egan, “Optical Sky Polarimetry and Photometry at Mauna Loa Observatory Affected by Stratospheric Dust from El Chichon,” Appl. Opt. 23, 1013–1020 (1984).
[CrossRef] [PubMed]

T. Takashima, K. Masuda, “Degree of Radiance and Polarization of the Upwelling Radiation from an Atmosphere–Ocean System,” Appl. Opt. 24, 2423–2429 (1985).
[CrossRef] [PubMed]

W. G. Egan, A. W. Hogan, “Meteorological Variation of Atmospheric Optical Properties in an Antarctic Storm,” Appl. Opt. 25, 1155–1165 (1986).
[CrossRef] [PubMed]

K. Masuda, T. Takashima, “Dependence of the Radiation Just Above and Below the Ocean Surface on Atmospheric and Oceanic Parameters,” Appl. Opt. 27, 4891–4898 (1988).
[CrossRef] [PubMed]

Icarus (1)

Y. Kawata, “Circular Polarization of Sunlight Reflected by Planetary Atmospheres,” Icarus 33, 217–232 (1978).
[CrossRef]

J. Atmos. Sci. (2)

J. E. Hansen, “Multiple Scattering of Polarized Light in Planetary Atmospheres. Part II. Sunlight Reflected by Terrestrial Water Clouds,” J. Atmos. Sci. 28, 1400–1426 (1971).
[CrossRef]

C. N. Adams, G. N. Plass, G. W. Kattawar, “The Influence of Ozone and Aerosols on the Brightness and Color of the Twilight Sky,” J. Atmos. Sci. 31, 1661–1674 (1974).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Ocean. (1)

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere Ocean System,” J. Phys. Ocean. 3, 353–372 (1973).
[CrossRef]

Opt. Eng. (1)

W. G. Egan, “Proposed Design of an Imaging Spectropolarimeter/Photometer for Remote Sensing of Earth Resources,” Opt. Eng. 25, 1155–1159 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

K. L. Coulson, V. S. Whitehead, C. Campbell, “Polarized Views of the Earth from Orbital Altitude,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 35–41 (1986).

Science (1)

K. Sassen, K-N Liou, S. Kinne, M. Griffen, “Highly Supercooled Cirrus Cloud Water: Confirmation and Climatic Implications,” Science 227, 411–413 (1985).
[CrossRef] [PubMed]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Trans. Am. Geophys. Union (1)

V. S. Whitehead, W. G. Egan, “Analysis of Terrestrial Polarization Imagery Obtained from the Space Shuttle,” Trans. Am. Geophys. Union 70, 301 (1989).

Other (9)

V. S. Whitehead, K. L. Coulson, “Remote Sensing in Polarized Light,” NASA Conf. Publ. 3014 (1988).

W. G. Egan, V. S. Whitehead, “Theoretical Basis and Significance of Polarization in Remote Sensing,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

W. G. Egan, V. S. Whitehead, “Polarization Imagery Obtained from the Space Shuttle,” in Technical Digest, Topical Meeting on Space Optics for Astrophysics and Earth and Planetary Remote Sensing (Optical Society of America, Washington, DC, 1988).

W. G. Egan, V. S. Whitehead, “Polarization Imagery of Terrestrial Areas Obtained During Space Shuttle Missions,” in IRS ’88: Current Problems in Atmospheric Radiation (Deepak, Hampton, VA, 1989), pp. 561–563.

G. F. J. Garlick, G. A. Steigman, U.K. Patent1,7,854 and G. F. J. Garlick, G. A. Steigman, U.S. Patent3,992,571, U. Hull, England (1976).

M. D. Buchanan, R. Pendergrass, “Digital Image Processing,” Electro. Opt. Syst. Des.29–36 (Mar.1980).

W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985).

W. G. Egan, “Aircraft Polarimetric and Photometric Observations,” in Proceedings, Fifth International Symposium on the Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1968), pp. 169–189.

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (Deepak, Hampton, VA, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Area photographed by the cameras in the Space Shuttle. The Island of Hawaii is at the center and ocean areas in the foreground, with scattered cumulus clouds. At upper right are the higher level stratus clouds.

Fig. 2
Fig. 2

Viewing geometry shows the cameras on the Space Shuttle with a 32° acceptance angle. The phase angles between the incident solar direction and camera acceptance angles to the surface lie between 114 and 146°; the principal plane is nearly coincident with the direction of polarization of the vertically oriented polarization analyzer on one of the cameras.

Fig. 3
Fig. 3

Overlay (over the area photographed in Fig. 1) of equipolarimetric areas in the red spectral region. A composite of the digitized positive and negative polarmetric imagery. By correlating the equipolarimetric areas with the laboratory simulation, aircraft measurements of ocean areas, and cloud modeling, the unique abilities of percent polarization are evident. The inversion angle position (0% polarization) is darkened; the optical depths of the clouds are sensitively shown by their inversion angle location.

Fig. 4
Fig. 4

Overlay (over the area photographed in Fig. 1) of equipolarimetric areas in the green spectral region (see Fig. 3 caption).

Fig. 5
Fig. 5

Overlay (over the area photographed in Fig. 1) of equipolarimetric areas in the blue spectral region (see Fig. 3 caption).

Fig. 6
Fig. 6

Laboratory model of Hawaiian volcanic ash: percent polarization as a function of color—60° polarimeter.

Fig. 7
Fig. 7

Percent polarization in integrated light (λ = 0.55 μm) of volcanic soil as a function of particle size. Finer soils have less polarization than coarser soils.

Fig. 8
Fig. 8

Sea surface percent polarization in green light (λ = 0.53 μm) as a function of phase angle in the plane of vision for low sun elevations represented by the viewing geometry. The plane of vision coincides with the principal plane. The bump in the curve at midphase angles characterizes the surface wind direction and velocity.

Fig. 9
Fig. 9

Atmospheric ground truth was available from the Hilo, HI, radiosonde; the transect occurs close to the time of the imagery. The ascent path is through the cloud deck. The wind velocity is shown by the flags at the right of the figure. Launch at 0000 GMT, 1 Sept. 1985.

Fig. 10
Fig. 10

Polarization at a wavelength of 0.7 μm (red) of Deirmendjian’s haze C, nimbostratus, and ice clouds. Cloud modeling at other wavelengths is in progress. The range of phase angles from 114 to 146° is indicated as representative of the range of phase angles across the imagery. Adapted from Ref. 12.

Fig. 11
Fig. 11

Plane of polarization at a wavelength of 0.7 μm (red) of Deirmendjian’s haze C, nimbostratus and ice clouds (see Fig. 10 caption).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ¯ = M ¯ S ¯ ,
I = E x 2 + E y 2 , Q = E x 2 E y 2 , U = 2 E x E y cos γ , V = 2 E x E y sin γ ,
% polarization = Q I × 100 .
% polarization = Q 2 + U 2 + V 2 I × 100 .

Metrics