Abstract

The optical resting point of a polarimetric sensor is normally reached by using a fixed retarder plate. It is shown that this retarder plate can be omitted by using 90° prisms of selected glass materials. The sensitivity of the prism retarder toward changes in wavelength and temperature is mathematically analyzed, and it is shown how the stability of the retarder system is influenced by the selection of materials and production tolerances on prism angles. A practical example is given.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shibata, “A Fibre Optic Electric Field Sensor Using the Electro Optic Effect of Bi4Ge3O12” IEE Conf. Publ. 211, 164–166 (1983).
  2. T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).
  3. W. B. Spillman, D. H. McMahon “Multimode Fiber-Optic Hydrophone Based on the Photoelastic Effect,” Appl. Opt. 21, 3511–3514 (1982).
    [CrossRef] [PubMed]
  4. W. B. Spillman, D. H. McMahon, “Multimode Fiber Optic Sensors,” IEE Conf. Publ. 211160–163 (1983).
  5. I. Filinski, T. Skettrup, “Achromatic Phase Retarders Constructed from Right-Angle Prisms: Design,” Appl. Opt. 23, 2747–2751 (1984).
    [CrossRef] [PubMed]

1984 (1)

1983 (2)

W. B. Spillman, D. H. McMahon, “Multimode Fiber Optic Sensors,” IEE Conf. Publ. 211160–163 (1983).

K. Shibata, “A Fibre Optic Electric Field Sensor Using the Electro Optic Effect of Bi4Ge3O12” IEE Conf. Publ. 211, 164–166 (1983).

1982 (1)

Filinski, I.

Hosoe, K.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).

McMahon, D. H.

W. B. Spillman, D. H. McMahon, “Multimode Fiber Optic Sensors,” IEE Conf. Publ. 211160–163 (1983).

W. B. Spillman, D. H. McMahon “Multimode Fiber-Optic Hydrophone Based on the Photoelastic Effect,” Appl. Opt. 21, 3511–3514 (1982).
[CrossRef] [PubMed]

Mitsui, T.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).

Miyamoto, S.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).

Shibata, K.

K. Shibata, “A Fibre Optic Electric Field Sensor Using the Electro Optic Effect of Bi4Ge3O12” IEE Conf. Publ. 211, 164–166 (1983).

Skettrup, T.

Spillman, W. B.

W. B. Spillman, D. H. McMahon, “Multimode Fiber Optic Sensors,” IEE Conf. Publ. 211160–163 (1983).

W. B. Spillman, D. H. McMahon “Multimode Fiber-Optic Hydrophone Based on the Photoelastic Effect,” Appl. Opt. 21, 3511–3514 (1982).
[CrossRef] [PubMed]

Usami, H.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).

Appl. Opt. (2)

IEE Conf. Publ. (2)

W. B. Spillman, D. H. McMahon, “Multimode Fiber Optic Sensors,” IEE Conf. Publ. 211160–163 (1983).

K. Shibata, “A Fibre Optic Electric Field Sensor Using the Electro Optic Effect of Bi4Ge3O12” IEE Conf. Publ. 211, 164–166 (1983).

Other (1)

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of Fiber Optic Voltage Sensors and Magnetic Field Sensors,” at IEEE/PES 1986 Summer Meeting, Mexico City, 20–25 July 1986 (86 SM 442-8).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical polarimetric sensor composed of two linear polarizers, a phase biasing retarder plate, and a double refracting sensor material.

Fig. 2
Fig. 2

If the polarization is 45° onto the plane of incidence the state of polarization will be changed due to differences in the phase retardation by the total internal reflection inside the prism.

Fig. 3
Fig. 3

Sensitivity toward manufacturing tolerances, alignment, and vibrations is high for refractive indices near √2 but very low for indices near √3.

Fig. 4
Fig. 4

Practical configuration of the prisms can be chosen in different ways depending on how the double refraction is introduced in the sensor material. Assuming a situation as shown in Fig. 1 the prisms could, e.g., be placed at each end of the sensing material. It is, however, always possible to place the two prisms side by side, in which case the light is circularly polarized when entering the sensor material.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 / 2 × [ 1 + cos 2 υ × cos ( δ τ ) ] ,
τ = ( 2 π / λ ) × ( λ 0 / 4 ) = π / 2 for λ = λ 0 ,
δ = 2 π × ( n 1 n 2 ) × L / λ ,
I ( 0 ° ) = I 0 / 2 × [ 1 + cos ( δ π / 2 ) ] = I 0 / 2 × ( 1 + sin δ ) ;
I ( 90 ° ) = I 0 / 2 × [ 1 cos ( δ π / 2 ) ] = I 0 / 2 × ( 1 sin δ ) .
I ac ( 0 ° ) / I dc = sin ( δ ) ~ δ for δ π / 4 .
I ( 0 ° ) I ( 90 ° ) I ( 0 ° ) + I ( 90 ° ) = sin ( δ ) ~ δ for δ π / 4 .
cos ( δ τ ) = cos [ δ ( π / 2 + Δ τ ) ] = sin ( δ Δ τ ) .
E in = ( 1 0 1 ) × E o × sin ( ω t k y ) ,
E p ( out ) = ( 0 1 0 ) × E o / 2 × sin ( ω t k x + δ p ) ,
E s ( out ) = ( 0 0 0 ) × E o / 2 × sin ( ω t k x + δ s ) ,
tan ( δ p / 2 ) = n × n 2 × sin 2 θ 1 / cos θ ,
tan ( δ s / 2 ) = n 2 × sin 2 θ 1 / ( n × cos θ ) .
δ = δ p δ s = 2 × arctan [ 1 1 / ( n 2 × sin 2 θ ) / tan θ ] .
δ = 2 × arctan ( 1 2 / n 2 ) .
δ λ = δ n × n λ = 2 [ n ( λ ) 2 1 ] × [ n ( λ ) 2 2 ] × n λ ,
δ T = δ n × n T = 2 [ n ( T ) 2 1 ] × [ n ( T ) 2 2 ] × n T ,
δ θ = 2 1 1 / ( n × tan θ ) 2 × [ cos θ n × tan θ * ( n × sin θ ) 2 1 1 1 / ( n × sin θ ) 2 ] .
δ θ | θ = 45 ° = 2 × n × ( 3 n 2 ) ( n 2 1 ) × ( n 2 2 ) .
n = 2 / [ 1 tan 2 ( δ total / 4 ) ] = 1 . 5538 .
Δ δ total < | π / 2 δ 1 δ 2 | + | Δ δ ( λ ) | + | Δ δ ( λ ) | + | Δ δ ( θ ) | ,
Δ δ ( λ ) = Δ λ × ( δ 1 / λ + δ 2 / λ ) ,
Δ δ ( T ) = Δ T × ( δ 1 / T + δ 2 / T ) ,
Δ δ ( θ ) = Δ θ × ( δ 1 / θ + δ 2 / θ ) ,
Δ δ total 3 . 676 mrad + 2 . 104 mrad + 1 . 273 mrad + 4 . 702 mrad , Δ δ total 11 . 76 mrad .
λ = 660 nm ( π / 2 δ 1 δ 2 ) = 16 . 26 mrad ; λ = 950 nm ( π / 2 δ 1 δ 2 ) = 13 . 28 mrad .

Metrics