Abstract

Two-tone frequency modulation spectroscopy has been used in conjunction with InGaAsP lasers in the 1.3-μm region to monitor weak water vapor absorptions in a long path White cell. Detection electronics that reduce the effect of Johnson noise are described. The system was capable of detecting optical densities corresponding to <1.7 × 10−6 in a 1-Hz bandwidth. Factors limiting the difference between observed and shot noise limited performance for these types of laser and condition are discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. W. Harris, G. I. Mackay, “Measurement of Atmospheric Gases by Laser Absorption Spectroscopy,” Am. Chem. Soc. Symp. Ser. 349, 274–288 (1987).
  2. H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
    [CrossRef]
  3. G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).
  4. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  5. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [CrossRef]
  6. W. Lenth, “Optical Heterodyne Spectroscopy with Frequency-and Amplitude-Modulated Semiconductor Lasers,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  7. W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045–1052 (1984).
    [CrossRef]
  8. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132–134 (1986).
    [CrossRef] [PubMed]
  9. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-Tone Frequency Modulation Spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986)
    [CrossRef]
  10. D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608 (1986).
    [CrossRef] [PubMed]
  11. D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: a Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726–3732 (1987).
    [CrossRef] [PubMed]
  12. D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–722 (1988).
    [CrossRef] [PubMed]
  13. D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  14. D. E. Cooper, C. B. Carlisle, “High-Sensitivity Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, Eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 180.
    [CrossRef]
  15. A. C. Stanton, J. A. Silver, “Measurements in the HCl3 ← 0 Band Using a Near-IR InGaAsP Diode Laser,” Appl. Opt. 27, 5009–5015 (1988).
    [CrossRef] [PubMed]
  16. C. B. Carlisle, D. E. Cooper, “Tunable-Diode-Laser Frequency-Modulation Spectroscopy Using Balanced Homodyne Detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]
  17. C. B. Carlisle, D. E. Cooper, “Tunable Diode Laser Frequency Modulation Spectroscopy Through an Optical Fiber: High Sensitivity Detection of Water Vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
    [CrossRef]
  18. D. T. Cassidy, “Trace Gas Detection Using 1.3-μm InGaAsP Diode Laser Transmitter Modules,” Appl. Opt. 27, 610–614 (1988).
    [CrossRef] [PubMed]
  19. J. U. White, “Very Long Optical Paths in Air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]
  20. J. Reid, J. Shewchun, B. K. Garside, E. A. Ballik, “High Sensitivity Pollution Detection Employing Tunable Diode Lasers,” Appl. Opt. 17, 300–307 (1978).
    [CrossRef] [PubMed]
  21. G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
    [CrossRef]
  22. J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
    [CrossRef]
  23. P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. P., Cambridge, 1980), pp. 288–289.
  24. L-G Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-Sensitivity Frequency-Modulation Spectroscopy with a GaAlAs Diode Laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  25. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum Noise-Limited FM Spectroscopy with a Lead-Salt Diode Laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  26. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-Limited FM-Spectroscopy with a Lead-Salt Diode Laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]

1990

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable Diode Laser Frequency Modulation Spectroscopy Through an Optical Fiber: High Sensitivity Detection of Water Vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

1989

1988

1987

1986

1985

1984

W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045–1052 (1984).
[CrossRef]

1983

1980

1978

1976

1928

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Ballik, E. A.

Bjorklund, G. C.

Bräuchle, C.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-Limited FM-Spectroscopy with a Lead-Salt Diode Laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Burrows, J. P.

G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).

Carlisle, C. B.

C. B. Carlisle, D. E. Cooper, “Tunable Diode Laser Frequency Modulation Spectroscopy Through an Optical Fiber: High Sensitivity Detection of Water Vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable-Diode-Laser Frequency-Modulation Spectroscopy Using Balanced Homodyne Detection,” Opt. Lett. 14, 1306–1308 (1989).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum Noise-Limited FM Spectroscopy with a Lead-Salt Diode Laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–722 (1988).
[CrossRef] [PubMed]

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-Tone Frequency Modulation Spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986)
[CrossRef]

D. E. Cooper, C. B. Carlisle, “High-Sensitivity Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, Eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 180.
[CrossRef]

Cassidy, D. T.

Cooper, D. E.

C. B. Carlisle, D. E. Cooper, “Tunable Diode Laser Frequency Modulation Spectroscopy Through an Optical Fiber: High Sensitivity Detection of Water Vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable-Diode-Laser Frequency-Modulation Spectroscopy Using Balanced Homodyne Detection,” Opt. Lett. 14, 1306–1308 (1989).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum Noise-Limited FM Spectroscopy with a Lead-Salt Diode Laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

D. E. Cooper, C. B. Carlisle, “High-Sensitivity FM Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 13, 719–722 (1988).
[CrossRef] [PubMed]

D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
[CrossRef]

D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: a Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726–3732 (1987).
[CrossRef] [PubMed]

D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608 (1986).
[CrossRef] [PubMed]

D. E. Cooper, C. B. Carlisle, “High-Sensitivity Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, Eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 180.
[CrossRef]

Gallagher, T. F.

Garside, B. K.

Gehrtz, M.

Harris, G. W.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

H. I. Schiff, G. W. Harris, G. I. Mackay, “Measurement of Atmospheric Gases by Laser Absorption Spectroscopy,” Am. Chem. Soc. Symp. Ser. 349, 274–288 (1987).

G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).

Hastie, D. R.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

Hill, W.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. P., Cambridge, 1980), pp. 288–289.

Horowitz, P.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. P., Cambridge, 1980), pp. 288–289.

Iguchi, T.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

Janik, G. R.

Johnson, J. B.

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Johnston, H. S.

Karecki, D. R.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

Klemp, D.

G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).

Lenth, W.

Mackay, G. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

H. I. Schiff, G. W. Harris, G. I. Mackay, “Measurement of Atmospheric Gases by Laser Absorption Spectroscopy,” Am. Chem. Soc. Symp. Ser. 349, 274–288 (1987).

Mayne, L. K.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

Preier, H.

Reid, J.

Riris, H.

Schiff, H. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

H. I. Schiff, G. W. Harris, G. I. Mackay, “Measurement of Atmospheric Gases by Laser Absorption Spectroscopy,” Am. Chem. Soc. Symp. Ser. 349, 274–288 (1987).

Shewchun, J.

Silver, J. A.

Slemr, F.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-Limited FM-Spectroscopy with a Lead-Salt Diode Laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Stanton, A. C.

Tate, D. A.

Wang, L-G

Warren, R. E.

Watjen, J. P.

Werle, P.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-Limited FM-Spectroscopy with a Lead-Salt Diode Laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

White, J. U.

Whittaker, E. A.

Young, A. T.

Zenker, T.

G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).

Am. Chem. Soc. Symp. Ser.

H. I. Schiff, G. W. Harris, G. I. Mackay, “Measurement of Atmospheric Gases by Laser Absorption Spectroscopy,” Am. Chem. Soc. Symp. Ser. 349, 274–288 (1987).

Appl. Opt.

Appl. Phys. B

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-Limited FM-Spectroscopy with a Lead-Salt Diode Laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Appl. Phys. Lett.

C. B. Carlisle, D. E. Cooper, “Tunable Diode Laser Frequency Modulation Spectroscopy Through an Optical Fiber: High Sensitivity Detection of Water Vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

IEEE J. Quantum Electron.

W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045–1052 (1984).
[CrossRef]

J. Atmos. Chem.

G. W. Harris, G. I. Mackay, T. Iguchi, L. K. Mayne, H. I. Schiff, “Measurements of Formaldehyde in the Troposphere by Tunable Diode Laser Absorption Spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989).
[CrossRef]

J. Geophys. Res. Atmos.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A Tunable Diode Laser System for Aircraft Measurement of Trace Gases,” J. Geophys. Res. Atmos. 95, 10147–10153 (1990).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev.

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Other

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U. P., Cambridge, 1980), pp. 288–289.

G. W. Harris, J. P. Burrows, D. Klemp, T. Zenker, “Trace Gas Measurements in the Tropical Atlantic Boundary Layer,” in Proceedings, International Ozone Symposium, Norwich U.K. (July1989).

D. E. Cooper, C. B. Carlisle, “High-Sensitivity Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, Eds. (Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 180.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram of the TTFMS spectrometer using InGaAsP lasers: BP, bandpass filter; LP, low pass filter; and HP, high pass filter.

Fig. 2
Fig. 2

(a) TTFMS signal from an H2O absorption band near 7830 cm−1 having an optical density of 4.2 × 10−3. (b) TTFMS signal from the same band with the pressure reduced to correspond to an optical density of 6.5 × 10−5. The inset displays the difference between two successive spectra on the same abscissa; the vertical bar corresponds to an OD of 7 × 10−6.

Fig. 3
Fig. 3

A 2f lock-in signal from an H2O absorption corresponding to an optical density of 9.0 × 10−4. The inset displays the difference between two successive spectra on the same abscissa; the vertical bar corresponds to an OD of 4.5 × 10−5.

Fig. 4
Fig. 4

Spectrum analyzer output of noise sources contributing to the TTFMS signal: A, spectrum analyzer baseline; B, with input from photodiode dropped over 125 kΩ and impedance matched to 50 Ω (i.e., detection system dark current); C, same as B but with 23 μW of laser power (no modulation) at the diode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ δ min 2 . 1 [ 1 CNR o + M 4 σ 2 P o 2 ] 1 / 2 ,
CNR o = 2 I S 2 I S N 2 ( 1 + M 2 2 ) 2 + I J N 2 = ( η e h ν ) 2 2 P o 2 2 e Δ f [ ( η e h ν ) P o ( 1 + M 2 2 ) 2 + 2 k T N e R I P ] ,
I J N 2 = V J N 2 R 2 = R L R 2 ( 4 k T Δ f ) .
CNR o = [ R L R ( η e h ν ) ] 2 2 P o 2 2 e Δ f [ ( R L R ) 2 ( η e h ν ) P o ( 1 + M 2 2 ) 2 + 2 k T N R L e R 2 ] .
4 k T Δ f R L ,
Noise Elec = I C N 2 + 4 k T Δ f R L + V I N 2 R L 2 .

Metrics