Abstract

We present an experimental and analytical investigation of the connection mechanism of physical-contact optical-fiber connectors with spherical convex polished ends and confirm that reducing the curvature radius of the spherical convex ferrule end face is effective for establishing a stable connection with slight axial compressive force on the ferrules.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
    [Crossref]
  2. W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.
  3. T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).
  4. R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
    [Crossref]
  5. E. Sugita, K. Iwasa, T. Shintaku, “Design for push-pull coupling single fiber connectors featuring zirconia (Zr02) ceramic ferrules,” presented at the Twelfth European Conference on Optical Communications, Barcelona, 1986.
  6. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, (McGraw-Hill, New York, 1951).
  7. I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).
  8. D. Gloge, E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).
  9. See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 7.6.1.

1987 (2)

T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).

R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
[Crossref]

1986 (1)

N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
[Crossref]

1984 (1)

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

1973 (1)

D. Gloge, E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

Born, M.

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 7.6.1.

Cheung, N. K.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Curtis, L.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Folkes, D. M.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Gloge, D.

D. Gloge, E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

Goodier, J. N.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, (McGraw-Hill, New York, 1951).

Iwasa, K.

E. Sugita, K. Iwasa, T. Shintaku, “Design for push-pull coupling single fiber connectors featuring zirconia (Zr02) ceramic ferrules,” presented at the Twelfth European Conference on Optical Communications, Barcelona, 1986.

Kaiser, P.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Kashima, N.

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

Marcatili, E. A. J.

D. Gloge, E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

Nagasawa, S.

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

Nagase, R.

T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).

R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
[Crossref]

Okuyama, M.

N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
[Crossref]

Sankawa, I.

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

Saruwatari, M.

N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
[Crossref]

Satake, T.

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

Shintaku, T.

T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).

R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
[Crossref]

E. Sugita, K. Iwasa, T. Shintaku, “Design for push-pull coupling single fiber connectors featuring zirconia (Zr02) ceramic ferrules,” presented at the Twelfth European Conference on Optical Communications, Barcelona, 1986.

Sugita, E.

T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).

R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
[Crossref]

E. Sugita, K. Iwasa, T. Shintaku, “Design for push-pull coupling single fiber connectors featuring zirconia (Zr02) ceramic ferrules,” presented at the Twelfth European Conference on Optical Communications, Barcelona, 1986.

Suzuki, N.

N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
[Crossref]

Timoshenko, S. P.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, (McGraw-Hill, New York, 1951).

Wagner, R. E.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Wolf, E.

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 7.6.1.

Young, W. C.

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Bell Syst. Tech. J. (1)

D. Gloge, E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52, 1563–1578 (1973).

Electron. Lett. (2)

N. Suzuki, M. Saruwatari, M. Okuyama, “Low insertion- and high return-loss optical connectors with spherically convex-polished ends,” Electron. Lett. 22, 110–112 (1986).
[Crossref]

R. Nagase, T. Shintaku, E. Sugita, “Effect of axial compressive force for connection stability in PC optical fibre connectors,” Electron. Lett. 23, 103–105 (1987).
[Crossref]

Trans. Inst. Electron. Commun. Eng. Jpn. (2)

T. Shintaku, R. Nagase, E. Sugita, “Study on connection stability of optical connectors with spherically convex-polished ends,” Trans. Inst. Electron. Commun. Eng. Jpn. J70-C, 290–292 (1987).

I. Sankawa, T. Satake, N. Kashima, S. Nagasawa, “Fresnel reflection reducing methods for optical-fiber connector with index matching material,” Trans. Inst. Electron. Commun. Eng. Jpn. J67-B, 1423–1430 (1984).

Other (4)

See, for example, M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sec. 7.6.1.

E. Sugita, K. Iwasa, T. Shintaku, “Design for push-pull coupling single fiber connectors featuring zirconia (Zr02) ceramic ferrules,” presented at the Twelfth European Conference on Optical Communications, Barcelona, 1986.

S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, (McGraw-Hill, New York, 1951).

W. C. Young, P. Kaiser, N. K. Cheung, L. Curtis, R. E. Wagner, D. M. Folkes, “A transfer-molded biconic connector with insertion losses below 0.3 dB without index match,” presented at the European Conference on Optical Communications, York, UK, 1980.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the experimental arrangement used to observe the osculating fiber end face.

Fig. 2
Fig. 2

Photograph of the reflected light from the interface of the glass plate and the fiber end face.

Fig. 3
Fig. 3

Relationship between fiber withdrawal and temperature change where a zirconia ceramic ferrule is used and the fiber is bonded by epoxy adhesive.

Fig. 4
Fig. 4

Return loss Rl as a function of fiber end separation D. Fiber end faces are separated where D > 0, and fiber end faces are deformed and brought into contact where D ≦ 0. The core radius is a = 25 μm, and the wavelength of light is λ = 0.85 μm.

Fig. 5
Fig. 5

Schematic of the apparatus for measuring return loss dependence on the axial compressive force.

Fig. 6
Fig. 6

Fiber withdrawal achieved by buffered hydrofluoric acid etching.

Fig. 7
Fig. 7

Return loss Rl as a function of axial compressive force F when fiber withdrawal U = 0.2 μm for various radii of curvature R of the convex fiber end: solid curve, calculated; open circles, measured. The core radius is a = 25 μm, the fiber radius is b = 62.5 μm, and the wavelength of light is λ = 0.85 μm.

Fig. 8
Fig. 8

Fiber withdrawal U and fiber end separation D.

Fig. 9
Fig. 9

Fiber end separation D as a function of axial compressive force F at U = 0.2 μm for various convex fiber end radii R. The filled circles indicate that the core end faces are in complete PC. a = 25 μm, b = 62.5 μm.

Fig. 10
Fig. 10

Strain distribution of a fiber along the axis and of a zirconia ferrule along the interface when axial compressive force is applied to the ferrules. The fiber ends are not yet in contact. F = 0.2 kgf, U = 0.2 μm, R = 20 mm.

Fig. 11
Fig. 11

Axial compressive force Fc required for complete PC between both core end faces as a function of fiber withdrawal U for various radii of curvature of the convex fiber end. a = 25 μm, b = 62.5 μm.

Fig. 12
Fig. 12

Two conditions between two fiber ends: (a) D > 0, fiber end faces are completely separated; (b) D ≦ 0, fiber end faces are deformed and brought into contact by axial compressive force.

Tables (1)

Tables Icon

Table I Physical Properties of Materials

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F p = 4 a 3 E 3 ( 1 ν 2 ) R ,
D = 2 { U [ R ( R 2 b 2 ) 1 / 2 ] } = 2 U b 2 / R ,
U p = ( b 2 2 a 2 ) / 2 R .
P ( r ) = [ 2 / ( π a 2 ) ] [ 1 ( r / a ) 2 ] ,
R f ( r ) = 4 K sin 2 [ 2 π g ( r ) / λ ] ( 1 K ) 2 + 4 K sin 2 [ 2 π g ( r ) / λ ] ,
K = ( n f n 0 ) 2 ( n f + n 0 ) 2 ,
g ( r ) = D + r 2 / R .
P g = 0 a R f ( r ) P ( r ) 2 π r d r .
P r = P g + P S .
R l = 10 log 10 P r .
g ( r ) = [ 2 / ( π R ) ] [ ( 2 a c 2 r 2 ) sin 1 ( a c / r ) + a c r ( 1 a c 2 r ) 1 / 2 ] + r 2 / R + D ,
a c = ( DR / 2 ) 1 / 2 ,
P g = a c a R f ( r ) P ( r ) 2 π r d r .

Metrics