Abstract

In combination with known thermomechanical-fatigue data for Mo, we have conducted transient photothermal deflection (TPD) measurements to develop a model for the multipulse laser damage of Mo mirrors to predict their lifetimes. In laser-damage experiments to verify the model, Mo mirrors were irradiated with 10-ns Nd:YAG laser pulses at 1064 nm at a 10-Hz repetition rate. Digitized TPD waveforms indicated peak surface angular deflection that could then be converted into surface displacement. Numerical modeling of the vertical heat distribution enabled the peak surface-deflection signal to be converted into peak surface temperature. The thermomechanical model was verified by both the experimental and the numerical results. Conventional mechanical-fatigue data for Mo were used to derive a predictive equation for the laser-accumulation lifetime of Mo mirrors. Experiments were performed with 1–104 pulses per site, yielding laser-damage thresholds and accumulation curves. The accumulation behavior predicted from measurements of mechanical fatigue was in excellent agreement with the measured behavior. Thus a single-pulse TPD measurement of peak deformation at a subthreshold laser fluence, in conjunction with mechanical-fatigue data, may be used to estimate the safe operating fluence for a component in a multipulse laser environment.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription