Abstract

This paper presents some simple and useful-ray tracing techniques for the design of a monolithic nonplanar solid-state ring laser. With appropriate constraints the approach gives a complete cavity stability map and the angular and dimensional tolerances required for fabrication.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10,62–64 (1985).
    [Crossref] [PubMed]
  2. T. J. Kane, A. C. Nielsson, R. L. Byer, “Frequency stability and offset locking of a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator,” Opt. Lett. 12, 175–177 (1987).
    [Crossref] [PubMed]
  3. W. R. Trutna, D. K. Donald, M. Nazarathy, “Unidirectional diode-laser-pumped Nd:YAG ring laser with a small magnetic field,” Opt. Lett. 12, 248–250 (1987).
    [Crossref] [PubMed]
  4. A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. QE-25, 767–790 (1989).
    [Crossref]
  5. J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 2.
  6. H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

1989 (1)

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. QE-25, 767–790 (1989).
[Crossref]

1987 (2)

1985 (1)

Byer, R. L.

Donald, D. K.

Dorschner, T. A.

H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

Gustafson, E. K.

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. QE-25, 767–790 (1989).
[Crossref]

Holtz, M.

H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

Kane, T. J.

Nazarathy, M.

Nielsson, A. C.

Nilsson, A. C.

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. QE-25, 767–790 (1989).
[Crossref]

Smith, W.

H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

Statz, H.

H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

Trutna, W. R.

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 2.

IEEE J. Quantum Electron. (1)

A. C. Nilsson, E. K. Gustafson, R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. QE-25, 767–790 (1989).
[Crossref]

Opt. Lett. (3)

Other (2)

J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 2.

H. Statz, T. A. Dorschner, M. Holtz, W. Smith, “The multi-oscillator ring laser gyroscope,” in Laser Handbook, M. L. Stitch, M. Bass, eds. (North-Holland, Amsterdam, 1985), p. 229.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Monolithic unidirectional nonplanar solid-state ring laser cavity (right) and the coordinate system used in the computation (left).

Fig. 2
Fig. 2

Relative deviation of the typical ray, in units of ω, on curved face A of the MISER cavity with L = 15 mm, α = 3.9°, with a radius of curvature of either 20 or 50 mm.

Fig. 3
Fig. 3

Stability map of the nonplanar ring resonator.

Fig. 4
Fig. 4

Dependence of the ray displacement on face A after 100 round trips on the deviation of out-of-plane angle α.

Fig. 5
Fig. 5

Dependence of the ray displacement on face A after 100 round trips on the deviation of the angle of the first reflecting plane B.

Fig. 6
Fig. 6

Dependence of the tolerance of the angle of the first reflecting plane B on the size of the cavity. The out-of-plane displacement OC was fixed at 0.3 mm and R = 50 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f 1 = f cos ( γ 1 ) , f 2 = f sec ( γ 1 ) ,
ω i = { D λ π n [ D / f i D 2 / ( 2 f i ) 2 ] 1 / 2 } 1 / 2 ,
Δ z = ω 2 , Δ x = Δ y = 0 .

Metrics